State-of-the-art language models (LMs) sometimes generate non-factual hallucinations that misalign with world knowledge. Despite extensive efforts to detect and mitigate hallucinations, understanding their internal mechanisms remains elusive. Our study investigates the mechanistic causes of hallucination, specifically non-factual ones where the LM incorrectly predicts object attributes in response to subject-relation queries. With causal mediation analysis and embedding space projection, we identify two general mechanistic causes of hallucinations shared across LMs of various scales and designs: 1) insufficient subject attribute knowledge in lower layer MLPs, and 2) failing to select the correct object attribute in upper layer attention heads and MLPs. These two mechanisms exhibit varying degrees of subject-object association, predictive uncertainty and perturbation robustness. Additionally, we scrutinize LM pre-training checkpoints, revealing distinct learning dynamics for the two mechanistic causes of hallucinations. We also highlight how attribution features from our causal analysis can effectively construct hallucination detectors. Our work proposes a mechanistic understanding of LM factual errors.
翻译:暂无翻译