In molecular communications (MC), inter-symbol interference (ISI) and noise are key factors that degrade communication reliability. Although time-domain equalization can effectively mitigate these effects, it often entails high computational complexity concerning the channel memory. In contrast, frequency-domain equalization (FDE) offers greater computational efficiency but typically requires prior knowledge of the channel model. To address this limitation, this letter proposes FDE techniques based on long short-term memory (LSTM) neural networks, enabling temporal correlation modeling in MC channels to improve ISI and noise suppression. To eliminate the reliance on prior channel information in conventional FDE methods, a supervised training strategy is employed for channel-adaptive equalization. Simulation results demonstrate that the proposed LSTM-FDE significantly reduces the bit error rate compared to traditional FDE and feedforward neural network-based equalizers. This performance gain is attributed to the LSTM's temporal modeling capabilities, which enhance noise suppression and accelerate model convergence, while maintaining comparable computational efficiency.


翻译:在分子通信中,码间干扰和噪声是降低通信可靠性的关键因素。尽管时域均衡能有效缓解这些影响,但其通常涉及与信道记忆相关的高计算复杂度。相比之下,频域均衡具有更高的计算效率,但通常需要先验的信道模型知识。为解决这一局限,本文提出基于长短期记忆神经网络的频域均衡技术,通过建模分子通信信道中的时间相关性来改善码间干扰和噪声抑制。为消除传统频域均衡方法对先验信道信息的依赖,采用监督训练策略实现信道自适应均衡。仿真结果表明,与传统频域均衡及基于前馈神经网络的均衡器相比,所提出的LSTM-FDE方法显著降低了误码率。这一性能提升归因于LSTM的时间建模能力,其增强了噪声抑制效果并加速了模型收敛,同时保持了相当的计算效率。

0
下载
关闭预览

相关内容

专知会员服务
27+阅读 · 2021年9月10日
专知会员服务
23+阅读 · 2021年6月22日
专知会员服务
18+阅读 · 2020年10月18日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
VIP会员
相关VIP内容
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员