Rate-splitting multiple access (RSMA) has emerged as a promising technique for efficient interference management in next-generation wireless networks. While most existing studies focus on downlink and single-cell designs, the modeling and analysis of uplink RSMA under large-scale deployments remain largely unexplored. On the basis of stochastic geometry (SG), this paper introduces a unified analytical framework that integrates finite modulation and coding scheme (MCS)-based rate adaptation. This framework jointly captures spatial interference coupling and discrete rate behavior to bridge theoretical tractability and practical realism. Within this framework, we derive tractable expressions for the conditional received rate (CRR), its spatial average, and higher-order statistics via the meta distribution, thereby quantifying both the mean and user-specific rate performance. Results show that the proposed unified framework not only generalizes existing non-orthogonal multiple access (NOMA) and orthogonal multiple access (OMA) analyses but also provides new insights into how discrete rate adaptation reshapes interference dynamics and fairness in dense RSMA-enabled networks.


翻译:速率分割多址接入(RSMA)已成为下一代无线网络中高效干扰管理的一项有前景的技术。尽管现有研究大多集中于下行链路和单小区设计,但大规模部署下的上行链路RSMA建模与分析在很大程度上仍未得到探索。基于随机几何(SG),本文引入了一个统一的分析框架,该框架集成了基于有限调制与编码方案(MCS)的速率自适应。该框架联合捕捉了空间干扰耦合和离散速率行为,以弥合理论可处理性与实际现实性之间的差距。在此框架内,我们通过元分布推导了条件接收速率(CRR)、其空间平均值以及高阶统计量的可处理表达式,从而量化了平均速率和用户特定速率性能。结果表明,所提出的统一框架不仅推广了现有的非正交多址接入(NOMA)和正交多址接入(OMA)分析,还为离散速率自适应如何重塑密集RSMA使能网络中的干扰动态和公平性提供了新的见解。

0
下载
关闭预览

相关内容

【KDD2024】面向课程图稀疏化的轻量级图神经网络搜索
专知会员服务
18+阅读 · 2024年6月25日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
23+阅读 · 2023年5月10日
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
38+阅读 · 2021年4月16日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
论文浅尝 | GEOM-GCN: Geometric Graph Convolutional Networks
开放知识图谱
14+阅读 · 2020年4月8日
【NeurIPS2019】图变换网络:Graph Transformer Network
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员