In the World Wide Web, reliable time series forecasts provide the forward-looking signals that drive resource planning, cache placement, and anomaly response, enabling platforms to operate efficiently as user behavior and content distributions evolve. Compared with other domains, time series forecasting for Web applications requires much faster responsiveness to support real-time decision making. We present KAIROS, a non-autoregressive time series forecasting framework that directly models segment-level multi-peak distributions. Unlike autoregressive approaches, KAIROS avoids error accumulation and achieves just-in-time inference, while improving over existing non-autoregressive models that collapse to over-smoothed predictions. Trained on the large-scale corpus, KAIROS demonstrates strong zero-shot generalization on six widely used benchmarks, delivering forecasting performance comparable to state-of-the-art foundation models with similar scale, at a fraction of their inference cost. Beyond empirical results, KAIROS highlights the importance of non-autoregressive design as a scalable paradigm for foundation models in time series.
翻译:在万维网中,可靠的时间序列预测提供了驱动资源规划、缓存配置和异常响应的前瞻性信号,使平台能够在用户行为和内容分布动态演变时高效运作。与其他领域相比,Web应用的时间序列预测需要更快的响应速度以支持实时决策。本文提出KAIROS,一种直接建模分段级多峰分布的非自回归时间序列预测框架。与自回归方法不同,KAIROS避免了误差累积并实现了即时推理,同时改进了现有非自回归模型容易坍缩为过度平滑预测的问题。通过在大规模语料库上进行训练,KAIROS在六个广泛使用的基准测试中展现出强大的零样本泛化能力,以远低于同类模型的推理成本,实现了与规模相近的最先进基础模型相当的预测性能。除实证结果外,KAIROS凸显了非自回归设计作为时间序列基础模型可扩展范式的重要性。