We review state-of-the-art formal methods applied to the emerging field of the verification of machine learning systems. Formal methods can provide rigorous correctness guarantees on hardware and software systems. Thanks to the availability of mature tools, their use is well established in the industry, and in particular to check safety-critical applications as they undergo a stringent certification process. As machine learning is becoming more popular, machine-learned components are now considered for inclusion in critical systems. This raises the question of their safety and their verification. Yet, established formal methods are limited to classic, i.e. non machine-learned software. Applying formal methods to verify systems that include machine learning has only been considered recently and poses novel challenges in soundness, precision, and scalability. We first recall established formal methods and their current use in an exemplar safety-critical field, avionic software, with a focus on abstract interpretation based techniques as they provide a high level of scalability. This provides a golden standard and sets high expectations for machine learning verification. We then provide a comprehensive and detailed review of the formal methods developed so far for machine learning, highlighting their strengths and limitations. The large majority of them verify trained neural networks and employ either SMT, optimization, or abstract interpretation techniques. We also discuss methods for support vector machines and decision tree ensembles, as well as methods targeting training and data preparation, which are critical but often neglected aspects of machine learning. Finally, we offer perspectives for future research directions towards the formal verification of machine learning systems.


翻译:正式方法可以提供硬件和软件系统的严格正确性保障。由于成熟工具的可用性,这些方法的使用在行业中已经牢固确立,特别是在它们经过严格的认证程序时检查安全关键应用程序。随着机器学习越来越受欢迎,现在考虑将机器学习组成部分纳入关键系统。这提出了它们的安全及其核查问题。但既定的正式方法限于传统,即非机器学习软件。采用正式方法核查包括机器学习在内的系统,只是最近才考虑过,在健全、精确和可缩放方面提出了新的挑战。我们首先回顾已经制定的正式方法及其目前用于一个非常安全关键领域,即虚拟软件,重点是抽象解释技术,因为它们具有高度的可缩放性。这为机器学习核查提供了黄金标准和高期望。我们随后全面、详细地审查为机器学习所制定的正式方法,突出其优点和局限性。我们首先回顾已经确立的正式方法,在健全、精确和可伸缩性方面提出了新的挑战。我们首先回顾已经确立的正式方法,然后将经过训练的机器研究网络和机载系统作为升级的学习方法。我们最后还利用经训练的机械研究网络和机载式研究方法来进行学习。

1
下载
关闭预览

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
二值多视角聚类:Binary Multi-View Clustering
我爱读PAMI
4+阅读 · 2018年6月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Top
微信扫码咨询专知VIP会员