3D snapshot microscopy enables volumetric imaging as fast as a camera allows by capturing a 3D volume in a single 2D camera image, and has found a variety of biological applications such as whole brain imaging of fast neural activity in larval zebrafish. The optimal microscope design for this optical 3D-to-2D encoding to preserve as much 3D information as possible is generally unknown and sample-dependent. Highly-programmable optical elements create new possibilities for sample-specific computational optimization of microscope parameters, e.g. tuning the collection of light for a given sample structure, especially using deep learning. This involves a differentiable simulation of light propagation through the programmable microscope and a neural network to reconstruct volumes from the microscope image. We introduce a class of global kernel Fourier convolutional neural networks which can efficiently integrate the globally mixed information encoded in a 3D snapshot image. We show in silico that our proposed global Fourier convolutional networks succeed in large field-of-view volume reconstruction and microscope parameter optimization where traditional networks fail.
翻译:3D快照显微镜使体积成像能够像照相机那样快速地通过在单一的2D摄像图像中捕捉到3D体积来进行体积成像,并发现了各种生物应用,如在幼子斑马鱼中对快速神经活动的整体脑成像。光学3D至2D编码保存尽可能多的3D信息的最佳显微镜设计一般是未知的,而且取决于抽样。高可编程光学元素为微镜参数的抽样特定计算优化创造了新的可能性,例如,对特定样本结构的光量的收集进行调控,特别是利用深层学习。这涉及通过可编程显微镜和神经网络对光传播进行不同的模拟,以便从显微镜图像中重建体积。我们引入了一种全球骨质骨质骨质骨质骨质骨质骨质骨髓神经网络,这种网络可以有效地将3D光片中编码成的全球混合信息有效地整合在一起。我们在硅中显示,我们提议的全球四相子变波网络在大型实地体积体积体积的体积重建中成功进行。