Neural models learn representations of high-dimensional data on low-dimensional manifolds. Multiple factors, including stochasticities in the training process, model architectures, and additional inductive biases, may induce different representations, even when learning the same task on the same data. However, it has recently been shown that when a latent structure is shared between distinct latent spaces, relative distances between representations can be preserved, up to distortions. Building on this idea, we demonstrate that exploiting the differential-geometric structure of latent spaces of neural models, it is possible to capture precisely the transformations between representational spaces trained on similar data distributions. Specifically, we assume that distinct neural models parametrize approximately the same underlying manifold, and introduce a representation based on the pullback metric that captures the intrinsic structure of the latent space, while scaling efficiently to large models. We validate experimentally our method on model stitching and retrieval tasks, covering autoencoders and vision foundation discriminative models, across diverse architectures, datasets, and pretraining schemes.


翻译:神经模型在高维数据上学习低维流形表示。训练过程中的随机性、模型架构以及额外的归纳偏置等多种因素可能导致不同的表示,即使在同一任务和相同数据上进行学习。然而,近期研究表明,当不同潜在空间共享潜在结构时,表示之间的相对距离可以在失真范围内得以保持。基于这一思想,我们证明通过利用神经模型潜在空间的微分几何结构,可以精确捕捉在相似数据分布上训练的表示空间之间的变换关系。具体而言,我们假设不同的神经模型近似参数化同一底层流形,并引入一种基于拉回度量的表示方法,该方法能够捕捉潜在空间的内在结构,同时可高效扩展至大型模型。我们在模型拼接与检索任务上通过实验验证了该方法,涵盖自编码器与视觉基础判别模型,涉及多种架构、数据集与预训练方案。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月13日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员