We study the problem of spectral graph clustering under edge differential privacy (DP). Specifically, we develop three mechanisms: (i) graph perturbation via randomized edge flipping combined with adjacency matrix shuffling, which enforces edge privacy while preserving key spectral properties of the graph. Importantly, shuffling considerably amplifies the guarantees: whereas flipping edges with a fixed probability alone provides only a constant epsilon edge DP guarantee as the number of nodes grows, the shuffled mechanism achieves (epsilon, delta) edge DP with parameters that tend to zero as the number of nodes increase; (ii) private graph projection with additive Gaussian noise in a lower-dimensional space to reduce dimensionality and computational complexity; and (iii) a noisy power iteration method that distributes Gaussian noise across iterations to ensure edge DP while maintaining convergence. Our analysis provides rigorous privacy guarantees and a precise characterization of the misclassification error rate. Experiments on synthetic and real-world networks validate our theoretical analysis and illustrate the practical privacy-utility trade-offs.
翻译:我们研究了在边差分隐私(DP)约束下的谱图聚类问题。具体而言,我们提出了三种机制:(i)通过随机边翻转结合邻接矩阵重排的图扰动方法,该方法在保护图的关键谱性质的同时实现了边隐私保护。重要的是,重排操作显著增强了隐私保证:当节点数量增加时,仅以固定概率翻转边仅能提供恒定的 epsilon 边 DP 保证,而经过重排的机制能够实现参数随节点数量增加而趋于零的 (epsilon, delta) 边 DP;(ii)在低维空间中添加高斯噪声的私有图投影方法,以降低维度并减少计算复杂度;(iii)一种噪声功率迭代方法,该方法将高斯噪声分散到多次迭代中,在确保边 DP 的同时保持算法的收敛性。我们的分析提供了严格的隐私保证,并对误分类错误率进行了精确刻画。在合成网络和真实网络上的实验验证了我们的理论分析,并展示了实际的隐私-效用权衡关系。