In this paper we review existing methods for robust functional principal component analysis (FPCA) and propose a new method for FPCA that can be applied to longitudinal data where only a few observations per trajectory are available. This method is robust against the presence of atypical observations, and can also be used to derive a new non-robust FPCA approach for sparsely observed functional data. We use local regression to estimate the values of the covariance function, taking advantage of the fact that for elliptically distributed random vectors the conditional location parameter of some of its components given others is a linear function of the conditioning set. This observation allows us to obtain robust FPCA estimators by using robust local regression methods. The finite sample performance of our proposal is explored through a simulation study that shows that, as expected, the robust method outperforms existing alternatives when the data are contaminated. Furthermore, we also see that for samples that do not contain outliers the non-robust variant of our proposal compares favourably to the existing alternative in the literature. A real data example is also presented.
翻译:在本文中,我们审查了功能主元件分析的现有稳健方法,并提出了FPCA的新方法,该方法可适用于每轨只有少量观测的纵向数据。这种方法与非典型观测相比是稳健的,也可以用于为观测很少的功能数据得出新的非有机FPCA方法。我们利用本地回归来估计共变函数值,利用下述事实,即:对椭圆分布随机矢量而言,其部分组成部分的有条件位置参数是调节组的线性功能。这一观测使我们能够通过使用稳健的局部回归方法获得FPCA的强健的估测值。我们提案的有限样本性能通过模拟研究加以探索,该模拟研究表明,如预期,强健方法在数据受到污染时优于现有替代品。此外,我们还看到,对于不包含我们提案中某些非野蛮变量的样品,我们提案的参数比文献中的现有替代物要好。还介绍了一个真实的数据实例。