We study $c$-crossing-critical graphs, which are the minimal graphs that require at least $c$ edge-crossings when drawn in the plane. For every fixed pair of integers with $c\ge 13$ and $d\ge 1$, we give first explicit constructions of $c$-crossing-critical graphs containing a vertex of degree greater than $d$. We also show that such unbounded degree constructions do not exist for $c\le 12$, precisely, that there exists a constant $D$ such that every $c$-crossing-critical graph with $c\le 12$ has maximum degree at most $D$. Hence, the bounded maximum degree conjecture of $c$-crossing-critical graphs, which was generally disproved in 2010 by Dvo\v{r}\'ak and Mohar (without an explicit construction), holds true, surprisingly, exactly for the values $c\le 12.$
翻译:我们研究的是美元交叉临界图,这是在平面上画出至少需要美元跨边界的最小图表。对于每对固定整数,只要1美元和1美元,我们首先明确构造含有超过美元顶点的美元交叉关键图。我们还表明,这种无约束度的构造对于12美元并不存在,确切地说,存在一个不变的美元,即每张12美元跨边界的美元交叉关键图中,最多有1美元。因此,2010年,Dvo\v{r ⁇ ak和Mohar(没有明确的构造)通常取消的美元跨关键图的界限最大度投影率($c\le 12.)是真实的,令人惊讶的是,对于美元12美元的价值来说,精确的确是如此。因此,2010年,Dvo\v{r ⁇ ak和Mohar(没有明确的构造)通常被Dvo\v{r ⁇ ak和Mohar(没有明确的构造)取消。