Empathetic response generation aims to comprehend the user emotion and then respond to it appropriately. Most existing works merely focus on what the emotion is and ignore how the emotion is evoked, thus weakening the capacity of the model to understand the emotional experience of the user for generating empathetic responses. To tackle this problem, we consider the emotional causality, namely, what feelings the user expresses (i.e., emotion) and why the user has such feelings (i.e., cause). Then, we propose a novel graph-based model with multi-hop reasoning to model the emotional causality of the empathetic conversation. Finally, we demonstrate the effectiveness of our model on EMPATHETICDIALOGUES in comparison with several competitive models.
翻译:富有同情心的响应生成旨在理解用户的情感,然后对其做出适当的反应。 大多数现有作品只是侧重于情感是什么,忽视情感是如何被唤起的,从而削弱了模型理解用户产生同情反应的情感体验的能力。为了解决这一问题,我们考虑了情感上的因果关系,即用户表达的情感(即情感)和用户为什么有这种感觉(即原因 ) 。 然后,我们提出了一个带有多动脉推理的新颖图表模型,以模拟同情性对话的情感因果关系。 最后,我们展示了我们关于EMPATYTICDILOGES的模型与若干竞争性模型相比的有效性。