Empathetic response generation aims to comprehend the user emotion and then respond to it appropriately. Most existing works merely focus on what the emotion is and ignore how the emotion is evoked, thus weakening the capacity of the model to understand the emotional experience of the user for generating empathetic responses. To tackle this problem, we consider the emotional causality, namely, what feelings the user expresses (i.e., emotion) and why the user has such feelings (i.e., cause). Then, we propose a novel graph-based model with multi-hop reasoning to model the emotional causality of the empathetic conversation. Finally, we demonstrate the effectiveness of our model on EMPATHETICDIALOGUES in comparison with several competitive models.


翻译:富有同情心的响应生成旨在理解用户的情感,然后对其做出适当的反应。 大多数现有作品只是侧重于情感是什么,忽视情感是如何被唤起的,从而削弱了模型理解用户产生同情反应的情感体验的能力。为了解决这一问题,我们考虑了情感上的因果关系,即用户表达的情感(即情感)和用户为什么有这种感觉(即原因 ) 。 然后,我们提出了一个带有多动脉推理的新颖图表模型,以模拟同情性对话的情感因果关系。 最后,我们展示了我们关于EMPATYTICDILOGES的模型与若干竞争性模型相比的有效性。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2021年8月8日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
4+阅读 · 2018年5月10日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员