Predicting the motion of agents such as pedestrians or human-driven vehicles is one of the most critical problems in the autonomous driving domain. The overall safety of driving and the comfort of a passenger directly depend on its successful solution. The motion prediction problem also remains one of the most challenging problems in autonomous driving engineering, mainly due to high variance of the possible agent's future behavior given a situation. The two phenomena responsible for the said variance are the multimodality caused by the uncertainty of the agent's intent (e.g., turn right or move forward) and uncertainty in the realization of a given intent (e.g., which lane to turn into). To be useful within a real-time autonomous driving pipeline, a motion prediction system must provide efficient ways to describe and quantify this uncertainty, such as computing posterior modes and their probabilities or estimating density at the point corresponding to a given trajectory. It also should not put substantial density on physically impossible trajectories, as they can confuse the system processing the predictions. In this paper, we introduce the PRANK method, which satisfies these requirements. PRANK takes rasterized bird-eye images of agent's surroundings as an input and extracts features of the scene with a convolutional neural network. It then produces the conditional distribution of agent's trajectories plausible in the given scene. The key contribution of PRANK is a way to represent that distribution using nearest-neighbor methods in latent trajectory space, which allows for efficient inference in real time. We evaluate PRANK on the in-house and Argoverse datasets, where it shows competitive results.


翻译:预测行人或人驾驶的车辆等代理人的动作是自主驾驶领域最关键的问题之一。驾驶的总体安全和乘客的舒适直接取决于其成功的解决办法。运动预测问题仍然是自主驾驶工程中最具挑战性的问题之一,这主要是由于在某种情况下可能发生的代理人未来行为差异很大。造成上述差异的两种现象是代理人意图不确定性(例如,向右转或向前移动)造成的多式联运,以及实现某种特定意图(例如,向右转或向前移动)的不确定性(例如,该航道要转向哪个航道)的不确定性。为了在实时自主驾驶管道中发挥作用,运动预测系统必须提供高效的方法来描述和量化这种不确定性,例如计算场景模式及其概率,或估计与特定轨迹相对应点的密度。造成上述差异的两种现象不应使实际不可能发生的轨迹变得高度集中,因为我们可能混淆处理预测的系统。在本文中,我们引入了PRANK方法,从而满足了这些要求。PRANK在实时自动驾驶管道中采用固定式的鸟眼分布方式,在正轨的图像中,在正轨流中以正态动力流中,将它作为真实的流流流流流流流流流的图像的图像的流中,将它作为正态的流流流流流流流的流中,用来制作。它作为正态的流的流的流动的流的流动的流动的流动的流动的流动的流成成成成。它为方向的流。它为方向的流的流的流的流。

0
下载
关闭预览

相关内容

如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
64+阅读 · 2021年2月12日
专知会员服务
50+阅读 · 2020年12月14日
【Manning新书】现代Java实战,592页pdf
专知会员服务
98+阅读 · 2020年5月22日
强化学习最新教程,17页pdf
专知会员服务
166+阅读 · 2019年10月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
视频目标检测:Flow-based
极市平台
22+阅读 · 2019年5月27日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
15+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
8+阅读 · 2017年11月25日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员