Interpolation and internal painting are one of the basic approaches in image internal painting, which is used to eliminate undesirable parts that occur in digital images or to enhance faulty parts. This study was designed to compare the interpolation algorithms used in image in-painting in the literature. Errors and noise generated on the colour and grayscale formats of some of the commonly used standard images in the literature were corrected by using Cubic, Kriging, Radial based function and High dimensional model representation approaches and the results were compared using standard image comparison criteria, namely, PSNR (peak signal-to-noise ratio), SSIM (Structural SIMilarity), Mean Square Error (MSE). According to the results obtained from the study, the absolute superiority of the methods against each other was not observed. However, Kriging and RBF interpolation give better results both for numerical data and visual evaluation for image in-painting problems with large area losses.


翻译:内插和内部绘画是图象内部绘画的基本方法之一,用于消除数字图像中出现的不良部分或增加有缺陷的部分,本研究旨在比较文献中图象油漆中图象中使用的内插算法,文献中一些常用标准图象的颜色和灰度格式产生的错误和噪音通过使用立方体、克里吉格、半射线功能和高维模型表达法加以纠正,并且使用标准图像比较标准标准标准比较了结果,即PSNR(信号对音比)、SSIM(结构性SMILIity)、极平方错误(MSE)。根据研究结果,没有观察到这些方法对立的绝对优势。然而,Kriging和RBF的内插图使数字数据和对大面积损失图像的直观评价产生更好的结果。

0
下载
关闭预览

相关内容

面向健康的大数据与人工智能,103页ppt
专知会员服务
108+阅读 · 2020年12月29日
专知会员服务
42+阅读 · 2020年12月18日
最新《序列预测问题导论》教程,212页ppt
专知会员服务
84+阅读 · 2020年8月22日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
已删除
将门创投
3+阅读 · 2019年1月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年4月1日
SwapText: Image Based Texts Transfer in Scenes
Arxiv
4+阅读 · 2020年3月18日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年1月15日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员