Modelling joint dynamics of liquid vanilla options is crucial for arbitrage-free pricing of illiquid derivatives and managing risks of option trade books. This paper develops a nonparametric model for the European options book respecting underlying financial constraints and while being practically implementable. We derive a state space for prices which are free from static (or model-independent) arbitrage and study the inference problem where a model is learnt from discrete time series data of stock and option prices. We use neural networks as function approximators for the drift and diffusion of the modelled SDE system, and impose constraints on the neural nets such that no-arbitrage conditions are preserved. In particular, we give methods to calibrate \textit{neural SDE} models which are guaranteed to satisfy a set of linear inequalities. We validate our approach with numerical experiments using data generated from a Heston stochastic local volatility model.
翻译:液体香草选择方案的联合动态建模对于无仲裁性地对液态衍生物进行定价和管理选择交易书的风险至关重要。本文为欧洲选择书开发了一个非参数模型,该模型尊重潜在的财务限制,在实际可行的情况下可以实施。我们为没有静态(或模式独立的)套利的价格开发了一个国家空间,并研究从不同时间序列的股票和选择价格数据中学习模型的推论问题。我们利用神经网络作为移动和传播模拟SDE系统的功能近似器,并对神经网施加限制,以保持无套利条件。特别是,我们提供了校准保证满足一系列线性不平等的\ textit{ neuralDE} 模型的方法。我们用赫斯顿随机本地波动模型产生的数据来验证我们的方法。