In recent years, the blockchain-based Internet of Things (IoT) has been researched and applied widely, where each IoT device can act as a node in the blockchain. However, these lightweight nodes usually do not have enough computing power to complete the consensus or other computing-required tasks. Edge computing network gives a platform to provide computing power to IoT devices. A fundamental problem is how to allocate limited edge servers to IoT devices in a highly untrustworthy environment. In a fair competition environment, the allocation mechanism should be online, truthful, and privacy safe. To address these three challenges, we propose an online multi-item double auction (MIDA) mechanism, where IoT devices are buyers and edge servers are sellers. In order to achieve the truthfulness, the participants' private information is at risk of being exposed by inference attack, which may lead to malicious manipulation of the market by adversaries. Then, we improve our MIDA mechanism based on differential privacy to protect sensitive information from being leaked. It interferes with the auction results slightly but guarantees privacy protection with high confidence. Besides, we upgrade our privacy-preserving MIDA mechanism such that adapting to more complex and realistic scenarios. In the end, the effectiveness and correctness of algorithms are evaluated and verified by theoretical analysis and numerical simulations.


翻译:近些年来,人们广泛研究并应用了基于元素链的互联网(IoT),每个IoT装置都可以在其中起到节点的作用。然而,这些轻量级节点通常没有足够的计算能力来完成协商一致或其他计算要求的任务。边缘计算网络提供了一个平台来为IoT装置提供计算能力。一个根本的问题是如何在一个极不可信的环境中将有限的边缘服务器分配给IoT装置。在公平的竞争环境中,分配机制应当是在线的、真实的和隐私安全的。为了应对这三个挑战,我们提议了一个在线多项目双拍卖机制,即IoT装置是购买者,边缘服务器是销售者。为了实现真实性,参与者的私人信息有被猜想攻击暴露的风险,这可能导致对手恶意操纵市场。然后,我们改进了基于差异隐私的MIDA机制,以保护敏感信息不被泄露。它影响拍卖结果轻微,但以高度自信来保证隐私保护。此外,我们提升了我们的隐私和边缘服务器安全性。此外,我们更新了我们的隐私-数字分析的准确性,并且通过对复杂性进行了更精确的模拟分析。

0
下载
关闭预览

相关内容

【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年11月27日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Arxiv
35+阅读 · 2019年11月7日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
人工智能 | SCI期刊专刊/国际会议信息7条
Call4Papers
7+阅读 · 2019年3月12日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
5+阅读 · 2018年11月27日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
Top
微信扫码咨询专知VIP会员