We revisit the classic problem of simplex range searching and related problems in computational geometry. We present a collection of new results which improve previous bounds by multiple logarithmic factors that were caused by the use of multi-level data structures. Highlights include the following: \begin{itemize} \item For a set of $n$ points in a constant dimension $d$, we give data structures with $O(n^d)$ (or slightly better) space that can answer simplex range counting queries in optimal $O(\log n)$ time and simplex range reporting queries in optimal $O(\log n + k)$ time, where $k$ denotes the output size. For semigroup range searching, we obtain $O(\log n)$ query time with $O(n^d\mathop{\rm polylog}n)$ space. Previous data structures with similar space bounds by Matou\v{s}ek from nearly three decades ago had $O(\log^{d+1}n)$ or $O(\log^{d+1}n + k)$ query time. \item For a set of $n$ simplices in a constant dimension $d$, we give data structures with $O(n)$ space that can answer stabbing counting queries (counting the number of simplices containing a query point) in $O(n^{1-1/d})$ time, and stabbing reporting queries in $O(n^{1-1/d}+k)$ time. Previous data structures had extra $\log^d n$ factors in space and query time. \item For a set of $n$ (possibly intersecting) line segments in 2D, we give a data structure with $O(n)$ space that can answer ray shooting queries in $O(\sqrt{n})$ time. This improves Wang's recent data structure [SoCG'20] with $O(n\log n)$ space and $O(\sqrt{n}\log n)$ query time.


翻译:在计算几何中,我们重新审视了简单值范围搜索及相关问题的典型问题。 我们展示了一套新结果, 这些结果通过使用多级别数据结构导致的多个对数因素改进了先前的界限。 亮度包括以下内容:\ begin{ suitize} \ 项 。 对于一个不变维度中的 $n 点, 我们给数据结构以 $( n) (或稍好) $( poor n) 空间( poor $ ) 的简单值计算查询。 以 $( log n + k) 最理想的 $( log n + k) 的时间和 $( log\ log n n) 表示输出大小。 对于半组的搜索, 我们得到了$( log n) 的查询时间和$( mathop hoprm log} 空间的相似的旧数据框结构, 从近30年前( \ log+ 1) 美元( 美元) 和 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 时间( 美元) 美元) 时间( O+) 时间( 美元) 数字) 数字) 数字( 数字) 数字( 数字) 数字) 数字) 和 数字( 数字) 数字( 数字) 数字) 的解算数据结构中, 数据( 数据( 数字( 数字) 数字) 数字( 和 数字) 数字( 数字) 数字(在一个持续数据结构中, 在一个( 时间( 数据结构中,在时间( )。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月1日
Arxiv
0+阅读 · 2022年12月1日
Arxiv
0+阅读 · 2022年11月30日
Arxiv
13+阅读 · 2019年11月14日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员