In computer graphics, the field of view of a camera is represented by a viewing frustum and a corresponding projection matrix, the properties of which, in the absence of restrictions on rectangular shape of the near plane and its parallelism to the far plane are currently not fully explored and structured. This study aims to consider the properties of arbitrary affine frustums, as well as various techniques for their transformation for practical use in devices with limited resources. Additionally, this article explores the methods of working with the visible volume as an arbitrary frustum that is not associated with the projection matrix. To study the properties of affine frustums, the dependencies between its planes and formulas for obtaining key points from the inverse projection matrix were derived. Methods of constructing frustum by key points and given planes were also considered. Moreover, frustum transformation formulas were obtained to simulate the effects of reflection, refraction and cropping in devices with limited resources. In conclusion, a method was proposed for applying an arbitrary frustum, which does not have a corresponding projection matrix, to limit the visible volume and then transform the points into NDC space.
翻译:在计算机图形中,摄像师的视野领域表现为观光透视和相应的投影矩阵,在不限制近平面的矩形形状及其与远平面的平行性的情况下,其特性目前尚未得到充分的探索和结构;本研究的目的是审议任意的金字塔结壳的特性,以及为在资源有限的装置中实际使用而对其进行转化的各种方法;此外,本文章探讨了与投影矩阵无关的、作为与投射矩阵无关的任意卷状进行工作的方法;为研究近平面结缘的特性,从反向投影矩阵中获取关键点的飞机和公式之间的依赖性;还考虑了用关键点和给定方块构造结壳的方法;此外,还获得了以有限资源模拟反射、反射和在装置中植入效果的结壳变公式;最后,提出了一种方法,以应用没有相应的投影矩阵的任意结壳,以限制可见的体积,然后将点转换成NDC空间。