The field of scientific publishing that is served by LaTeX is increasingly dependent on the availability of metadata about publications. We discuss how to use LaTeX classes and BibTeX styles to curate metadata throughout the life cycle of a published article. Our focus is on streamlining and automating much of publishing workflow. We survey the various options and drawbacks of the existing approaches and outline our approach as applied in a new LaTeX style file where we have as main goal to make it easier for authors to specify their metadata only once and use this throughout the entire publishing pipeline. We believe this can help to reduce the cost of publishing, by reducing the amount of human effort required for editing and providing of publication metadata.


翻译:摘要:LaTeX服务的科学出版领域越来越依赖于关于出版物的元数据的可用性。我们讨论如何使用LaTeX classes和BibTeX styles在发布的文章的整个生命周期中策划元数据。我们的重点是简化和自动化出版工作流程。我们调查了现有方法的各种选项和缺点,并概述了我们的方法,即应用于新的LaTeX样式文件,我们的主要目标是让作者只需指定其元数据一次,就可以在整个出版管道中使用它。我们认为,这可以帮助减少出版成本,通过减少编辑和提供出版元数据所需的人力投入。

0
下载
关闭预览

相关内容

元数据(Metadata),又称元数据、中介数据、中继数据[来源请求],为描述数据的数据(data about data),主要是描述数据属性(property)的信息,用来支持如指示存储位置、历史数据、资源查找、文件纪录等功能。元数据算是一种电子式目录,为了达到编制目录的目的,必须在描述并收藏数据的内容或特色,进而达成协助数据检索的目的。
【2022新书】机器学习中的统计建模:概念和应用,398页pdf
专知会员服务
142+阅读 · 2022年11月5日
专知会员服务
124+阅读 · 2020年9月8日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
21+阅读 · 2021年12月31日
Arxiv
35+阅读 · 2021年8月2日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
151+阅读 · 2017年8月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习思维导图
机器学习研究会
15+阅读 · 2017年8月20日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
4+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员