This report describes a 2nd place solution of the detection challenge which is held within CVPR 2020 Retail-Vision workshop. Instead of going further considering previous results this work mainly aims to verify previously observed takeaways by re-experimenting. The reliability and reproducibility of the results are reached by incorporating a popular object detection toolbox - MMDetection. In this report, I firstly represent the results received for Faster-RCNN and RetinaNet models, which were taken for comparison in the original work. Then I describe the experiment results with more advanced models. The final section reviews two simple tricks for Faster-RCNN model that were used for my final submission: changing default anchor scale parameter and train-time image tiling. The source code is available at https://github.com/tyomj/product_detection.


翻译:本报告介绍了CVPR 2020 Retail-Vision-Servication-Vial-ViewSor 讲习班内举行的探测挑战第二点解决办法,这项工作不但没有进一步考虑先前的成果,而且主要旨在通过再试验来核实以前观察到的外卖。通过纳入一个受欢迎的物体探测工具箱-MMSurvedition,可以实现结果的可靠性和可复制性。在本报告中,我首先代表了在原始工作中被比较的“更快”和“里坦纳Net”模型的结果。然后我用更先进的模型来描述试验结果。最后一节审查了用于我最后提交文件的“更快”-RCNN模型的两个简单技巧:改变默认锚标尺参数和火车时间图像图案。源代码可在https://github.com/tyomj/product_detraction查阅。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
80+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
159+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Precise Detection in Densely Packed Scenes
Arxiv
3+阅读 · 2019年4月8日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员