Vision Transformers (ViTs) is emerging as an alternative to convolutional neural networks (CNNs) for visual recognition. They achieve competitive results with CNNs but the lack of the typical convolutional inductive bias makes them more data-hungry than common CNNs. They are often pretrained on JFT-300M or at least ImageNet and few works study training ViTs with limited data. In this paper, we investigate how to train ViTs with limited data (e.g., 2040 images). We give theoretical analyses that our method (based on parametric instance discrimination) is superior to other methods in that it can capture both feature alignment and instance similarities. We achieve state-of-the-art results when training from scratch on 7 small datasets under various ViT backbones. We also investigate the transferring ability of small datasets and find that representations learned from small datasets can even improve large-scale ImageNet training.


翻译:视觉变异器(Viet Generals)正在出现,以替代进化神经网络(CNN)进行视觉识别。它们与CNN取得了竞争性结果,但缺乏典型的进化感偏差使他们比普通CNN更渴望数据。他们通常在JFT-300M或至少图像网上接受过预先培训,而且很少用有限的数据对ViTs进行工作研究培训。在本文中,我们调查如何用有限的数据(例如2040图像)培训ViTs。我们进行了理论分析,认为我们的方法(基于参数实例歧视)优于其他方法,因为它能够捕捉特征对齐和实例相似性。当从零到培训维特各主干下的7个小数据集时,我们取得了最先进的结果。我们还调查了小型数据集的传输能力,并发现从小数据集中学会的表述甚至可以改进大规模图像网培训。

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年7月30日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
心之所向的无尽蓝,vivo S12 Pro「屿蓝」
ZEALER订阅号
0+阅读 · 2022年1月27日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
3+阅读 · 2022年4月19日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
1+阅读 · 2022年4月15日
Arxiv
27+阅读 · 2018年4月12日
VIP会员
相关VIP内容
专知会员服务
30+阅读 · 2021年7月30日
最新《自监督表示学习》报告,70页ppt
专知会员服务
86+阅读 · 2020年12月22日
最新《Transformers模型》教程,64页ppt
专知会员服务
312+阅读 · 2020年11月26日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
心之所向的无尽蓝,vivo S12 Pro「屿蓝」
ZEALER订阅号
0+阅读 · 2022年1月27日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关论文
Arxiv
3+阅读 · 2022年4月19日
Salient Objects in Clutter
Arxiv
0+阅读 · 2022年4月18日
Arxiv
1+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
1+阅读 · 2022年4月15日
Arxiv
27+阅读 · 2018年4月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员