项目名称: 卷曲型量子阱微谐振腔的光学性质和探测性能研究

项目编号: No.61575213

项目类型: 面上项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 甄红楼

作者单位: 中国科学院上海技术物理研究所

项目金额: 16万元

中文摘要: 量子阱红外探测器作为一种重要的红外探测器件在长波、太赫兹以及多色探测方面都有很重要的应用价值。本项目将在应力工程研究的基础上,通过在量子阱红外探测器中引入卷曲型微谐振腔结构,深入研究管状谐振腔中的光学谐振过程,研究利用谐振腔集中红外光波能量以求实现高灵敏度探测的原理和方法。项目研究工作中将以理论建模和实验验证方式实现量子阱材料设计、量子阱薄膜图形化处理、卷曲结构调控等,并在机理研究上揭示该特殊结构中相互作用增强的原理。在此基础上,通过材料和工艺的优化调节量子阱及相应卷曲谐振腔的结构,进一步增强谐振腔中的红外光谐振,以达到提高量子阱红外探测器件量子效率的目的。本项目在机理研究和原型器件制备上的探索将有力推进在红外探测领域实现谐振腔共振增强模式下的红外探测。同时,这也将在很大程度上解决目前量子阱红外探测器量子效率偏低这一重要的瓶颈问题。

中文关键词: 量子阱红外探测器;卷曲谐振腔;管状结构;红外探测;

英文摘要: As a kind of important infrared detection devices, quantum well infrared devices have great potentials in sensing long-wavelength optical wave in tera-hertz range and in the field of multi-color detection. The current project proposes is to combine the quantum well infrared detector with rolled-up vertical optical resonator via strain engineering. The optical resonance in the tubular resonator will be carefully investigated to disclose how the resonator concentrates the energy of infrared wave. The project will be carried out both theoretically and experimentally and the sensitivity of the detection device will be enhanced on the basis of strengthened interaction between the quantum well and light wave. This is planned to be realize by designing suitable materials for quantum well, patterning nanomembranes, as well as tuning the tubular structures, and the mechanism regarding the intensified interaction will also be elucidated. In addition, the structures of quantum wells and resonator will be further optimized in both materials and process aspects to improve the infrared resonance in the resonators, which will ultimately enhance the sensitivity and quantum efficiency of the detector. The exploration in mechanism and fabrication process in this project may greatly improve the performance of the infrared detectio

英文关键词: quantum well infrared detector;rolled-up resonator;microtube;infrared detection;

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
65+阅读 · 2021年7月4日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
专知会员服务
51+阅读 · 2020年12月28日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
中国高校最强超算!上算引力波,下算光量子
量子位
0+阅读 · 2021年12月15日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
14+阅读 · 2021年3月10日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
135+阅读 · 2018年10月8日
小贴士
相关VIP内容
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
65+阅读 · 2021年7月4日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
专知会员服务
51+阅读 · 2020年12月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员