项目名称: 利用高K材料的极低比导通电阻硅功率器件基础问题的研究

项目编号: No.61204084

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 李俊宏

作者单位: 电子科技大学

项目金额: 28万元

中文摘要: 提高功率器件的性能是降低电能损耗,实现节能减排的最有效途径之一。尽管人们开展了大量的工作来提高功率器件性能,然而鲜有文献报道用引入高K材料的方式来提高硅功率器件的性能。在本课题中,申请人提出利用高K材料的高介电性来实现硅功率器件导通时的载流子超强积累效应,从而可以在不影响耐压的前提下,使功率器件漂移区载流子浓度大幅提高,呈数量级降低比导通电阻。本课题将制备各种参数的高K原型LDMOS并进行测试,实验证明高K能引入超强积累效应并实现极低比导通电阻。以此原型器件作为对象,结合二维仿真,分析该效应的详细物理机理,建立该效应的数学模型,寻找器件最优化条件。本课题还将针对高K在功率器件上的应用要求,对材料和工艺进行优化。该课题对未来功率器件的发展具有重要的理论意义和实际价值,为高K超强积累效应提供科学依据,为高K材料在功率器件上的应用提供理论、机理、模型的指导,为未来功率器件的发展开辟一个新方向。

中文关键词: 高K横向IGBT;赝高K材料;高K功率器件;高K槽结构;

英文摘要: Having better power devices is one of the most effective ways for reducing the electricity loss and realizing energy saving. Whereas the application of high-K material on silicon power devices has rarely aroused people's interests. We propose a new idea that utilizes larger permittivity of high-K materials to realize the ultra carrier accumulation effect at device on-states, which allows the overwhelming enhancement of the carrier density at the drift region and reduce the device specific on-resistance in orders scale. In this program, we will design and fabricate a prototype high-K LDMOS where ultra carrier accumulation effect will happen, target at which, demonstrates the ultra carrier accumulation effect experimentally. Moreover, combined with 2D-simulation, we will analysis the detail mechanism, build the mathematic model, find the optimum conditions and upgrade the process for the both effect and device. This program is essential for future power device both theoretically and practically, which provides the scientific evidence for high-K ultra carrier accumulation effect; guides the high-K application on power device from aspects of analysis, mechanism, and model; and opens up a new branch for future power device roadmap.

英文关键词: high-K LIGBT;pseudo-high-K material;high-K power device;high-K trench;

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
16+阅读 · 2020年12月4日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
曹羽 | 从知识工程到知识图谱全面回顾
开放知识图谱
20+阅读 · 2019年5月5日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月28日
Arxiv
0+阅读 · 2022年4月27日
Arxiv
101+阅读 · 2020年3月4日
Arxiv
26+阅读 · 2019年3月5日
A Multi-Objective Deep Reinforcement Learning Framework
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
军事知识图谱构建技术
专知会员服务
122+阅读 · 2022年4月8日
【博士论文】分形计算系统
专知会员服务
33+阅读 · 2021年12月9日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
48+阅读 · 2021年8月4日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
16+阅读 · 2020年12月4日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员