项目名称: 基于硅烯/锗烯纳米带及其异质结的自旋电子器件的机理研究

项目编号: No.11347015

项目类型: 专项基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 王志勇

作者单位: 桂林理工大学

项目金额: 20万元

中文摘要: 本课题采用基于密度泛函理论的第一性原理结合非平衡格林函数方法,探索空位缺陷、杂质和复合缺陷对单层硅烯/锗烯纳米带及其异质结的电子结构、自旋及输运特性的影响机制。课题拟从实验验证的模型出发,通过合理设计含有不同杂质和缺陷的纳米带模型,并进行几何结构优化,实现对单层硅烯/锗烯纳米带及其异质结的电子结构和输运性能等的研究。 研究内容主要包括:(1)研究磁性原子(钴、镍等)和非磁性原子(硼、氮等)掺杂对硅烯/锗烯纳米带自旋及输运性能等的影响,并揭示异质原子在单层硅烯/锗烯纳米带中的取代掺杂机理;(2)研究含空位缺陷的硅烯/锗烯纳米带的自旋及输运特性,探讨硅烯/锗烯纳米带中空位缺陷的形成机制,并确立缺陷结构与单层硅烯/锗烯纳米带性能之间有效的参数控制体系;(3)研究含复合缺陷的硅烯/锗烯纳米带的自旋及输运特性;(4)研究硅烯/锗烯纳米带异质结的自旋及输运特性,探讨层与层之间的范德瓦尔斯作用。

中文关键词: 硅烯;锗烯;掺杂;电子学性能;输运

英文摘要: Using the first-principles based on density functional theory combined with non-equilibrium green function method, it is exploring the effect mechanism between vacancy defects, dopants, complex defects and the electronic structures, spin and transport properties of silicene/germanene nanoribbon and its heterostructures. The project is beginning to model according to the experiment's results.Designing the rational models of nanoribbons with different dopants and defects, all the models will be optimized. The electronic structures and transport properties of silicene/germanene nanoribbons and its heterostructure will be investigated. The research contents mainly including: (1) The effects of the spin and transorpt properties of silicene/germanene nanoribbons with magnetic atoms(Ni, Co,et al.) and non-magnetic atom(B,N,et al.) doping will be investigated, and it is exploring the mechanism of the heteroatom substitute doping in the silicene/germanene nanoribbons ; (2) The spin and transport properties of silicene/germanene nanoribbons with vacancy defects will be investigated, and it is exploring the formation mechanism of vacancy defects of silicene/germanene nanoribbons, It is establishing the effective parameter's modulation system between the defective configurations and the properties of silicene/germanene nan

英文关键词: Silicene;Germanene;Doping;Electronic property;Transport

成为VIP会员查看完整内容
0

相关内容

深度神经网络FPGA设计进展、实现与展望
专知会员服务
33+阅读 · 2022年3月21日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
专知会员服务
42+阅读 · 2021年5月24日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
企业风险知识图谱的构建及应用
专知会员服务
94+阅读 · 2020年11月6日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
专知会员服务
18+阅读 · 2020年9月14日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
18+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
深度神经网络FPGA设计进展、实现与展望
专知会员服务
33+阅读 · 2022年3月21日
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
专知会员服务
42+阅读 · 2021年5月24日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
企业风险知识图谱的构建及应用
专知会员服务
94+阅读 · 2020年11月6日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
专知会员服务
18+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员