项目名称: M100点燃式发动机未燃醇醛排放及TWC失活的机理研究
项目编号: No.51506047
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 能源与动力工程
项目作者: 刘方杰
作者单位: 河南科技大学
项目金额: 21万元
中文摘要: 纯甲醇发动机常存在未燃醇醛排放高和常规尾气三效催化反应器(TWC)寿命短等现象。发动机排气中甲醇在450℃开始氧化生成甲醛,600℃以上甲醇、甲醛则快速氧化。发动机大部分工况下排气管进口温度不低于600℃,但由于沿程传热排气温度快速下降,甲醇甲醛不能被高温氧化,甲醇可能在TWC内氧化成甲醛排放。本项目重点研究排气沿程甲醇、甲醛浓度随时间变化历程,试验和数值模拟相结合探索排气成分、温度、流速和氧浓度等参数对醇、醛氧化的影响规律,阐明排气系统中醇醛低温氧化机理;利用排气余热强化甲醇、甲醛氧化,探索改善氧化边界条件对醇、醛排放的影响规律,结合TWC协同控制,优化醇醛排放控制策略;通过采集已老化的TWC,对不同部位的催化剂样品进行表征与分析,探索有害金属和非金属元素等对催化剂活性下降的影响规律,揭示甲醇发动机三效催化反应器短寿命失活的机理。本研究为甲醇发动机实现超低醇醛排放提供理论依据和技术支持。
中文关键词: 甲醇发动机;甲醛排放;控制策略;三效催化反应器
英文摘要: M100 means pure methanol. M100 spark ignition engine usually gets in trouble of high formaldehyde emission and a shorter life of three-way catalytic converters (TWC). Methanol can be oxidized in the exhaust when its temperature is higher than 450℃. It can be fast transformed over 600℃ that is why formaldehyde emission decreases. In most conditions, the temperature of the exhaust in the expansion stroke and exhausted into the pipe is higher than 600℃, due to the heat dissipation along with the pipe, its temperature descends rapidly, as a result, methanol is oxidized to be formaldehyde in TWC, instead of being oxidized in the pipe. The applied project is aimed at the mechanism and the control of the unburned methanol and formaldehyde emissions from the exhaust of M100 methanol engine. To study the effects of the boundary conditions of the exhaust gas composition, temperature, flow rate and oxygen concentration on methanol and formaldehyde oxidation, the variation of the concentrations of methanol and formaldehyde along with the exhaust pipe will be investigated. The low temperature oxidation mechanism in the exhaust pipe will be understood. To study the control strategies, low heat rejection exhaust pipe will be applied. Their influences on methanol and formaldehyde oxidation will be clarified. Furthermore, with the help of TWC, ultra-low unregulated emissions can be achieved. Although, methanol consists of no sulphur, TWC is still short life. TWC deactivation mechanism caused by methanol engine exhaust will be studied. Based on the researches carried out in this project, the oxidation mechanism and control strategy of unburned methanol and formaldehyde will be established, which will support the development of M100 methanol spark ignition engine theoretically and technically.
英文关键词: Methanol engine;formaldehyde emission;control strategy;three-way catalytic converter