项目名称: 基于原子系综的通信波段量子中继的实验研究

项目编号: No.61275115

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 史保森

作者单位: 中国科学技术大学

项目金额: 92万元

中文摘要: 长距离的量子通信必须借助于量子中继器才能实现,而量子中继器的数目对量子通信的效率和所需要的时间产生至关重要的影响。在目前的基于原子系综的量子中继研究中,由于中继单元主要用碱金属元素,因而作为联络单元的光子其波长并不处于光纤的通信窗口。这样造成光子在光纤传输中存在较大损耗,导致长距离量子通信中所需要的量子中继单元数目增大。这不但使系统变得更加复杂,增加了成本,更严重的是降低了通信的效率。本项目以原子级联辐射制备的分别处于通信波段和原子跃迁波段的纠缠光子对为基础,利用电磁诱导透明效应实现信息存储,采用频率上转换实现光子在存储波段与光纤通信窗口之间的转换,利用双光子干涉技术建立存储单元之间的纠缠等克服光纤量子通信中传输距离的瓶颈问题,为实现长距离量子通信获取有价值的经验和技术积累。本项目拟研究的几个方面尚无相关报道,这是本项目区别于现存其它方案的之处,也是本项目的主要特色和创新之处。

中文关键词: 量子存储;频率变换;量子信息;;

英文摘要: The realization of long-distance quantum information processing requires mitigation of losses in the fibre-optical channels by using quantum repeater protocols. Besides,the amount of the quantum repeater used also greatly affects on the efficiency and the spent time of the communication.At present,the demonstrations of neutral-atom- quantum memories involve light fields outside the telecom-wavelength window, limiting the transmission to a distance of a few kilometres because of large loss the photon transmits in the fiber. Therefore a quantum memory interfaced with telecom light is required for long-distance quantum communication.In this project, we wish study and investigate how to build up a quantum repeater within telecomband.We will start our research by preparing a polarization entangled photon pair firstly via a Ladder-type atomic configuration. A distinguishing feature of such a photon source is that one photon in a pair is telecomband, the other is suitable for the storage in rubdium atoms.Then we try to experimentally store one photon in rubdium atoms by EIT effect to build up an entanglement between the atomic ensemble and the other photon in telecomband.Next,we will entangle two seperated atomic ensembles by entanglement swapping between two photons in telecomband from two photon pair sources.Besid

英文关键词: quantum memory;frequency conversion;quantum information;;

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
【2022新书】经典与量子计算导论,392页pdf
专知会员服务
70+阅读 · 2022年1月17日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
41+阅读 · 2022年1月1日
专知会员服务
33+阅读 · 2021年10月17日
专知会员服务
65+阅读 · 2021年5月8日
【经典书】信息论原理,774页pdf
专知会员服务
240+阅读 · 2021年3月22日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
全网最全-网络模型低比特量化
极市平台
0+阅读 · 2022年1月12日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
【2022新书】经典与量子计算导论,392页pdf
专知会员服务
70+阅读 · 2022年1月17日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
41+阅读 · 2022年1月1日
专知会员服务
33+阅读 · 2021年10月17日
专知会员服务
65+阅读 · 2021年5月8日
【经典书】信息论原理,774页pdf
专知会员服务
240+阅读 · 2021年3月22日
量子信息技术研究现状与未来
专知会员服务
38+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员