项目名称: 双相纳米支架复合干细胞构建组织工程椎间盘

项目编号: No.81201430

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 医学四处

项目作者: 丰干钧

作者单位: 四川大学

项目金额: 23万元

中文摘要: 干细胞复合支架材料构建的组织工程椎间盘为椎间盘退变的治疗提供了新方法。然而,目前该领域的一大挑战在于创建适当的干细胞微环境"指导"同一群落的干细胞分化为椎间盘不同区域(髓核/纤维环)细胞表型。细胞外基质是干细胞微环境的重要组成部分,作为人工细胞外基质,支架材料应有效模拟天然细胞外基质(主要由直径50-500纳米的纤维组成)。因此,构建与椎间盘结构相适应的纳米支架材料,是目前亟需解决的问题。 电纺可编织同向排列的纳米纤维诱导干细胞分化为成纤维细胞并形成纤维组织,是构建纤维环的理想支架。而我们前期研究表明,相分离编织出的纳米支架联合低氧可成功模拟髓核微环境,构建组织工程髓核。在前期工作的基础上,本项目拟通过相分离联合电纺,编织纳米尺度的双相支架,营造分别与髓核/纤维环分化对应的干细胞微环境,"指导"干细胞在支架不同区域自发分化为相应细胞表型,从而形成具有生理功能的组织工程椎间盘。

中文关键词: 椎间盘;纳米纤维;干细胞微环境;相分离;电纺

英文摘要: Tissue-engineered intervertebral disc implants provide a potentional solution to intervertebral disc (IVD) degeneration. Bone marrow-derived mesenchymal stem cells (MSCs) are a potential autologous stem cell source for IVD regeneration. However, one of the key issue of constructing a functional tissue-engineered IVD is to create unique niches that can "direct" a single MSC population to differentiate into the nucleus pulposus or anulus fibrosus zones of the IVD. The extracellular matrix (ECM) plays an important role in stem cell niche, a good scaffolding material should mimic the advantageous features of the natural ECM. Since the natural ECM is mainly composed of 50-500 nm nanofibers, a scaffold with synthetic nanofibers is needed. It has been reported that electrospun and oriented nanofibers could direct the MSCs differentiating into the fibrous phenotype. Therefore, the elespinning nanofibrous scaffold is suitable for annulus fibrosus engineering. However, the low cell penetration rate of electrospun nanofibrous scaffold limits their further application in nucleus pulposus regeneration. Previously, using phase separation, we developed a 3D scaffold with highly inter-connected macropores, nanofibrous matrix with a fiber diameter on the scale of 100 nm and a high surface to volume ratio. Combined with the low o

英文关键词: intervertebral disc;nanofiber;stem cell niche;phase separation;electrospinning

成为VIP会员查看完整内容
0

相关内容

【CVPR2022】整合少样本学习的分类和分割
专知会员服务
26+阅读 · 2022年3月31日
元学习-生物医学中连接标记和未标记数据
专知会员服务
29+阅读 · 2021年8月3日
COVID-19文献知识图谱构建,UIUC-哥伦比亚大学
专知会员服务
42+阅读 · 2020年7月2日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
人机对抗智能技术
专知会员服务
201+阅读 · 2020年5月3日
专知会员服务
19+阅读 · 2020年3月29日
专知会员服务
27+阅读 · 2020年3月6日
Nature重磅:“饿死”癌细胞,又添新线索
学术头条
0+阅读 · 2021年10月21日
Science:脂肪细胞外泌体对巨噬细胞发挥调节功能
外泌体之家
19+阅读 · 2019年3月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关主题
相关VIP内容
【CVPR2022】整合少样本学习的分类和分割
专知会员服务
26+阅读 · 2022年3月31日
元学习-生物医学中连接标记和未标记数据
专知会员服务
29+阅读 · 2021年8月3日
COVID-19文献知识图谱构建,UIUC-哥伦比亚大学
专知会员服务
42+阅读 · 2020年7月2日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
人机对抗智能技术
专知会员服务
201+阅读 · 2020年5月3日
专知会员服务
19+阅读 · 2020年3月29日
专知会员服务
27+阅读 · 2020年3月6日
微信扫码咨询专知VIP会员