项目名称: 新型金属-有机骨架化合物基超级电容器电极材料的制备与性能研究

项目编号: No.21203223

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理化学

项目作者: 郎俊伟

作者单位: 中国科学院兰州化学物理研究所

项目金额: 26万元

中文摘要: 本项目首次提出金属-有机骨架化合物(MOFs)可用做超级电容器电极活性材料的研究设想,通过镍、钴、锰基MOFs材料的设计合成以及其电化学电容性能测试加以验证,并制备出性能优异的超级电容器用MOFs/金属氧化物纳米复合材料。选择Ni、Co、Mn离子作为配位中心,和不同的有机配体发生自组装反应,合成具有丰富孔道结构和超高比表面积的MOFs。通过改变有机配体的结构来调节MOFs材料的比表面积、孔径分布和孔体积,并系统研究这些孔结构特征与其超级电容性能之间的内在关系,阐明MOFs在不同电解液中的电化学行为与储能机制。在此基础上,基于材料纳米化和复合化的思路,设计和制备结构新颖且超级电容性能优异的MOFs/金属氧化物纳米复合材料。根据实验结果对材料制备工艺进行科学优化,最终获得能量密度高且循环稳定性好的MOFs基超级电容器电极材料的关键制备技术。本项目将成功开拓MOFs材料新的潜在应用领域。

中文关键词: 金属-有机骨架化合物;金属氧化物;纳米复合材料;超级电容器;锂离子混合电容器

英文摘要: In this project, we will bring forward a novel research supposition for the first time, that metal-organic frameworks (MOFs) can be used for the activated electrode materials for supercapacitors, then this supposition will be verified by the controllable synthesis of Ni、Co and Mn-based MOFs and the investigations of their electrochemical capacitive properties. The final purpose is that we can fabricate successfully MOFs and MOFs/metal oxide nanocomposites with excellent supercapacitive performances. In order to achieve our purpose, Ni、Co and Mn cations and different organic ligands will be firstly employed, to synthesize MOFs materials with abundant porous structures and ultrahigh surface areas. Through adjusting the structure of organic ligands, the surface area, the pore-size distribution and the pore volume of as-prepared MOFs can be adjusted and controlled. The inherent correlations between the pore structures of the MOFs and their supercapacitive properties will be investigated in detail. The electrochemical behaviors and the energy storage mechanisms of the MOFs will be clarified as well. On this basis, we will use such MOFs as the templates, to prepare novel MOFs/metal oxide nanocomposites with excellent supercapacitive performances. The influences of the microstructures and the compositions of the nanoco

英文关键词: Metal-organic frameworks;Metal oxides;Nanocomposites;Supercapacitors;Li-ion hybrid supercapacitors

成为VIP会员查看完整内容
0

相关内容

【干货书】数据挖掘药物发现,347页pdf
专知会员服务
134+阅读 · 2021年9月20日
专知会员服务
133+阅读 · 2021年9月16日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
准确率达 95%,机器学习预测复杂新材料合成
机器之心
1+阅读 · 2022年1月1日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
小贴士
相关VIP内容
【干货书】数据挖掘药物发现,347页pdf
专知会员服务
134+阅读 · 2021年9月20日
专知会员服务
133+阅读 · 2021年9月16日
专知会员服务
25+阅读 · 2021年9月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员