项目名称: 基于硅-石墨烯复合结构的高速空间光调制器

项目编号: No.61505104

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 邱辞源

作者单位: 上海交通大学

项目金额: 22万元

中文摘要: 空间光调制器是光信息处理中的关键器件,其性能直接影响了未来光信息处理技术的发展。现有的空间光调制器在速度、尺寸等方面还存在各种不足,不能完全满足未来光信息处理技术的要求。本项目中拟从材料和器件结构入手,在硅器件上引入具有高电子迁移率和高电-光作用效应的新材料石墨烯以增强器件的反应速度和有效电-光作用效应,提出了一种基于硅-石墨烯复合结构的新型空间光调制器。该调制器首先利用衍射耦合方式,实现硅基一维光子晶体谐振腔对自由光束的耦合;其次通过利用电容器结构调节石墨烯的费米能级控制它的电子带间跃迁,改变石墨烯在通讯波段上的损耗和折射率,进而控制谐振腔的品质因素和谐振波长,实现对空间光束进行调制。前期研究预期该器件的调制速率可以达到80GHz同时调制波形的消光比达到10dB。 由于该器件具有调制速度快、尺寸小、价格低、可大规模集成等特点,可望对光信息处理技术的发展产生一定作用。

中文关键词: 空间光调制器;硅基波导;石墨烯;光子晶体;谐振腔

英文摘要: Spatial light modulator(SLM) is the key component for optical information processing, however, current SLM still have drawbacks in some aspects such as speed, size, cost and so on. Thus it is extremely important to develop a new type of SLM with high speed, low cost and capability of large scale integration. Here, we proposed a new SLM based on the silicon-graphene hybrid structure. Firstly, the device can manipulate the free space wave through the 1D silicon photonic cavity based on diffraction coupling scheme. Secondly, the electron inter-band transition for graphene in the communication band can be controlled by tuning its fermi level. Then both the refractive index and absorption coefficient for the graphene can be changed which in turn determine the resonant wavelength and quality factor for the 1D photonic crystal cavity. In this way, the free space wave can be modulated by tuning the fermi level of graphene. As graphene has ultra-high electron mobility and electro-optic effect, the modulation speed is expected to be 80GHz with extinction ratio larger than 10dB.This compact SLM has fast modulation speed, small dimension, low cost and the capability of large scale integration which will be an important component for the development of optical information processing.

英文关键词: Spatial light modulator;Silicon based waveguide;Graphene;Photonic crystal cavity;Resonator

成为VIP会员查看完整内容
0

相关内容

《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
专知会员服务
11+阅读 · 2021年7月13日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
18+阅读 · 2020年12月23日
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
56+阅读 · 2021年5月3日
小贴士
相关VIP内容
《终端友好6G技术》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
专知会员服务
11+阅读 · 2021年7月13日
专知会员服务
31+阅读 · 2021年5月7日
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
21+阅读 · 2021年4月20日
专知会员服务
18+阅读 · 2020年12月23日
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员