项目名称: MEMS仿生矢量水听器“桔瓣”式复合效应封装技术研究

项目编号: No.51205374

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 机械工程学科

项目作者: 张国军

作者单位: 中北大学

项目金额: 26万元

中文摘要: MEMS水听器是当前国内外声换能器领域研究的热点之一。由中北大学研制的MEMS仿生矢量水听器因其具有体积小、矢量性、成本低、刚性安装等优势,在国内外得到一定的认可,但离工程应用还有一定距离,主要表现在灵敏度偏低,频响带宽较窄,抗流噪声性能差等几个方面。为此,本项目基于流体连续性方程提出MEMS仿生矢量水听器"桔瓣"式封装结构,通过研究该封装结构的复合效应机理,以此提高水听器的灵敏度、频响范围和流激噪声抑制能力。首先,针对该"桔瓣式"封装进行声学建模、流体建模分析其灵敏度;结构建模、有限元仿真分析其频响带宽。其次,通过典型水域环境实验比对验证该封装结构的流激噪声抑制能力。最后,通过振动试验、冲击试验、温循试验等验证其可靠性。最终实现灵敏度提高20dB,带宽拓展1~2倍,流噪声抑制能力提高20dB以上,可靠性有较大提高,为MEMS仿生矢量水听器的工程应用奠定基础。

中文关键词: 微电子机械系统;矢量水听器;声学换能器;;

英文摘要: The MEMS hydrophone is one of the research hotspot in the acoustic transducer field in domestic and international world at present. The MEMS bionic vector hydrophone invented by the North University of China has got certain recognition in the domestic and international field for its small size, vector property, low-cost, rigid mount and other advantages. While the vector hydrophone's low sensitivity , narrow frequency response range and poor ability of suppressing flow noise, it still has some way to achieve its engineering application.To this end, a kind of "orange petal"-type package structure for MEMS bionic vector hydrophone based on the fluid continuity equation is proposed in the project, and by studying the compound effect of this package structure to increase the sensitivity and the ability of anti-flow noise, broaden the bandwidth response of the vector hydrophone. First, a Acoustic model and fluid model of the "orange petal"-style package structure is established to analyze the sensitivity; and structure model, finite element model is also established to analyze the bandwidth response. Second, In order to verify the ability of anti-flow noise, the MEMS vector hydrophone with "orange petal"package will be tested in the typical application environment. Finally, The reliability will be verified through t

英文关键词: MEMS;vector hydrophone;acoustic transducer;;

成为VIP会员查看完整内容
0

相关内容

无人机地理空间情报在智能化海战中的应用
专知会员服务
114+阅读 · 2022年4月14日
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
5G赋能,民用引领,无人机产业迎来新变革,35页报告
专知会员服务
37+阅读 · 2022年3月20日
专知会员服务
36+阅读 · 2021年10月16日
专知会员服务
31+阅读 · 2021年7月25日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
冬奥战袍中蕴藏的科技元素,人才竞争是关键
学术头条
0+阅读 · 2022年2月15日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
CSIG云上微表情第三期研讨会成功举办--微表情的前世今生
CSIG机器视觉专委会
1+阅读 · 2020年8月31日
OLAP引擎这么多,为什么苏宁选择用Druid?
51CTO博客
12+阅读 · 2018年12月20日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
小贴士
相关VIP内容
无人机地理空间情报在智能化海战中的应用
专知会员服务
114+阅读 · 2022年4月14日
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
5G赋能,民用引领,无人机产业迎来新变革,35页报告
专知会员服务
37+阅读 · 2022年3月20日
专知会员服务
36+阅读 · 2021年10月16日
专知会员服务
31+阅读 · 2021年7月25日
基于改进卷积神经网络的短文本分类模型
专知会员服务
25+阅读 · 2020年7月22日
商业数据分析,39页ppt
专知会员服务
160+阅读 · 2020年6月2日
基于视觉的三维重建关键技术研究综述
专知会员服务
160+阅读 · 2020年5月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员