项目名称: 无水质子传递通道的仿生构建与离子液体质子传递机理研究

项目编号: No.21206151

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 化学工程及工业化学

项目作者: 王景涛

作者单位: 郑州大学

项目金额: 25万元

中文摘要: 质子交换膜燃料电池是一种将化学能直接转化为电能的高效、低污染的新型发电装置,被认为是很有前途的绿色替代能源装置,目前制约其商业化应用的一个关键问题是开发操作条件(高温、低湿)下具有高质子传导率且稳定的质子交换膜(电池的心脏)。本研究采用仿生学思路,提出一种新颖的无水质子交换膜设计思想:通过磺化芳香高分子在成膜过程中自组装形成亲水性纳米通道;将咪唑离子液体填充到亲水性通道内,在通道表面形成酸碱对,构建仿生质子载体环境,实现质子高效传导;利用咪唑两性和离子液体物化特性实现膜在高温低湿或无水状态下的质子传导;为提高膜结构稳定性,在膜表面修饰纳米薄层将离子液体封装于通道内。通过考察通道结构、组成对质子传递能力和传递方式的影响,揭示酸碱对、离子液体质子传递机理,实现高性能无水质子交换膜的可控制备。本研究具有重要的理论意义和应用价值,有望为高效质子传递通道构建及质子传递过程强化提供理论基础和技术支持。

中文关键词: 质子交换膜;离子液体;酸碱对;过程强化;氢燃料电池

英文摘要: Due to its high energy efficiency and environmentally benign features, the proton exchange membrane (PEM) fuel cell, which converts chemical energy directly into electric energy, is believed to be the best type of fuel cell for vehicular power sources to eventually replace gasoline and diesel internal-combustion engines. At present, development of PEM with stable and high proton conductivity under operating conditions (high temperature and low humidity) is a major challenge that must be solved. Based on biological principles, a novel approach for fabricating anhydrous proton-conducting membrane is developed in this project as follows: (i) membrane with connective hydrophilic nanochannels is created by the self-assembly of sulfonated aromatic polymer during membrane fabrication; (ii) imidazole ionic liquid is then incorporated into the nanochannels to form acid-base pairs on the channel surface, which construct biomimetic proton carriers and thus allow for efficient proton transfer; (iii) the unique physicochemical properties will yield a high proton conductivity under high temperature and low humidity, as well as anhydrous conditions; and (iv) a dense nano-layer is formed and adhered tightly to membrane surface to encapsulate ionic liquid into the nanochannels, in turn enhancing the structural stability of membr

英文关键词: Proton exchange membrane;Ionic liquid;Acid-base pair;Process intensification;Hydrogen fuel cell

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
46+阅读 · 2021年6月26日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
43+阅读 · 2021年2月8日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
120+阅读 · 2020年7月9日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
Nature论文 | 货运列车电动化,why not?
机器之心
0+阅读 · 2022年2月5日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
57+阅读 · 2021年5月3日
Arxiv
10+阅读 · 2020年6月12日
Arxiv
102+阅读 · 2020年3月4日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
21+阅读 · 2022年2月10日
专知会员服务
46+阅读 · 2021年6月26日
专知会员服务
40+阅读 · 2021年5月12日
专知会员服务
43+阅读 · 2021年2月8日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
26+阅读 · 2020年7月19日
【KDD2020】自适应多通道图卷积神经网络
专知会员服务
120+阅读 · 2020年7月9日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
相关资讯
Nature论文 | 货运列车电动化,why not?
机器之心
0+阅读 · 2022年2月5日
仅1.1克重,最快的软跳跃机器人Made in China!
学术头条
0+阅读 · 2021年12月8日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
10000个科学难题 • 制造科学卷
科学出版社
13+阅读 · 2018年11月29日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员