项目名称: 基于三维结构信息预测蛋白质相互作用及其位点的计算研究

项目编号: No.31301091

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 生物科学

项目作者: 刘融

作者单位: 华中农业大学

项目金额: 22万元

中文摘要: 随着蛋白质结构数据的快速增长,利用三维结构信息预测蛋白质相互作用及其位点已成为结构生物信息学中的热点问题。本项目将分别构建基于机器学习和模板的相互作用位点预测模型,系统评价独立使用它们时的利弊,利用其互补性改善预测效果。其次,将开发以图模型和表面形态为基础的局部结构比对算法,用于评价相互作用界面间及模拟界面与真实界面间的结构差异。据此开发结构信息驱动的蛋白质相互作用关系预测算法,并整合其他非结构数据构建多信息融合的计算分析平台。最后,考虑到结构信息尚未被用于水稻蛋白的相互作用预测,将把上述流程运用于水稻基因组,并对预测结果进行实验验证。本项目的顺利开展将深化从原子层面对蛋白质相互作用与识别机制的认识,提供自动的、高效的蛋白质相互作用及其位点的预测方法,在水稻中的应用不仅可以进一步揭示其生命活动规律,还可以为新型水稻的培育提供线索,因此具有重要基础科学意义和重大潜在应用价值。

中文关键词: 蛋白质;功能位点;蛋白质相互作用;相互作用界面;结构信息

英文摘要: With fast growth of protein structural data, prediction of protein-protein interactions and protein interaction sites using 3D structural information has become a problem of increasing importance in structural bioinformatics. First, we will build machine learning and template-based methods to identify protein interaction sites, evaluate the advantages and limitations as the individual method will be used, and improve the prediction using the complementarity between them. Second, we will develop the local structural alignment methods based on graph model and surface shape, which will be used to show the structural similarity between different binding interfaces. Based on this, we will develop structure-based method for predicting protein-protein interactions and incorporate non-structural information to enhance the performance. Last, considering that structural information has not been used to identify protein interactions in rice,we will apply the above computational pipeline to rice genome and validate the prediction results by experiments. This project will enhance our understanding of the mechanisms of protein-protein interactions at the atomic level and provide automatic and efficient methods for predicting protein interactions and their binding sites. The prediction of rice interactome will be not only bene

英文关键词: protein;functional site;protein interaction;protein interface;structural information

成为VIP会员查看完整内容
0

相关内容

人工智能到深度学习:药物发现的机器智能方法
专知会员服务
37+阅读 · 2022年5月6日
NeurIPS 2021 | 通过动态图评分匹配预测分子构象
专知会员服务
22+阅读 · 2021年12月4日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月27日
深度学习预测蛋白质-蛋白质相互作用
机器之心
5+阅读 · 2022年1月15日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年6月1日
Generating 3D Molecules for Target Protein Binding
Arxiv
1+阅读 · 2022年5月30日
Arxiv
0+阅读 · 2022年5月26日
Directional Graph Networks
Arxiv
27+阅读 · 2020年12月10日
小贴士
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员