项目名称: 痕量气体卫星反演中大气Ring效应的同步探测机理与估算模型研究

项目编号: No.41271365

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 天文学、地球科学

项目作者: 韩冬

作者单位: 中国科学院遥感与数字地球研究所

项目金额: 60万元

中文摘要: 大气NO2、SO2等痕量气体浓度的卫星遥感监测是近十几年来全球一直关注的问题,我国经济迅速发展带来的NO2、SO2排放已经受到国外指责,但我国目前还缺乏NO2、SO2等气体的探测载荷,而且在NO2、SO2的辐射传输求解方面也受到国外技术的限制,如目前公开的用于NO2、SO2反演的辐射传输软件系统就缺少Ring 效应模块。而Ring 效应问题是卫星反演NO2浓度中的关键问题之一,不考虑Ring 效应会带来8-15%的精度误差。准确恰当地分析、探讨大气Ring效应形成的物理机制,建立卫星同步探测和参数估算模型,面向卫星DOAS污染气体反演有针对性地计算Ring效应(差分)光谱或系数,并利用地基MAXDOAS、偏振光谱仪观测进行模拟验证,得到完整的Ring效应解决方案。既具有相当的科学意义,又对我国的大气卫星遥感有着重要的应用价值。

中文关键词: Ring 效应;拉曼散射;卷积;DOAS;

英文摘要: The world has been concerned about the monitoring of atmospheric trace gas concentration of O3,NO2 and SO2 with satellite remote sensing in the last decade. NO2, SO2 emissions brought by China's rapid economic development have been accused abroad.So far the Chinese satellite load to detect concentration of NO2, SO2 is developing.Futhermore, Ring effect module of radiative transfer model is not availeble because of restrictions of foreign technology. The derivation of Ring spectrum is a key technique in the retrieval of trace gas concentration.Without thinking about Ring effect,concentration of NO2 will be underestimated to 8-15%.Based on the physical mechanism of the atmosphere and water Ring effect, an algorithm to calculate differential cross sections of the Ring effect in the earth's atmosphere based on raman scattering should be derived for retrieval of atmospheric trace gas concentration. At last but not the least ,validation with MAXDOAS on the ground should be performed.

英文关键词: Ring effect;Raman scattering;convolution;DOAS;

成为VIP会员查看完整内容
0

相关内容

6G物理层AI关键技术白皮书(2022)
专知会员服务
43+阅读 · 2022年3月21日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
53+阅读 · 2021年10月1日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
61+阅读 · 2021年7月5日
专知会员服务
41+阅读 · 2021年7月5日
专知会员服务
129+阅读 · 2021年6月18日
量子信息技术研究现状与未来
专知会员服务
41+阅读 · 2020年10月11日
贝索斯和马斯克比拼放卫星
36氪
0+阅读 · 2022年4月11日
程序员大部分时间都在“熟悉系统”
CSDN
0+阅读 · 2022年4月6日
消失的巨轮|焦点分析
36氪
0+阅读 · 2022年2月23日
如何利用深度学习优化大气污染物排放量估算?
微软研究院AI头条
0+阅读 · 2021年8月31日
自动驾驶高精度定位如何在复杂环境进行
智能交通技术
18+阅读 · 2019年9月27日
深海打捞K-129,冷战中的奇迹工程【六】
余晟以为
12+阅读 · 2019年5月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
17+阅读 · 2021年3月29日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
小贴士
相关VIP内容
6G物理层AI关键技术白皮书(2022)
专知会员服务
43+阅读 · 2022年3月21日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
40+阅读 · 2021年11月29日
专知会员服务
53+阅读 · 2021年10月1日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
61+阅读 · 2021年7月5日
专知会员服务
41+阅读 · 2021年7月5日
专知会员服务
129+阅读 · 2021年6月18日
量子信息技术研究现状与未来
专知会员服务
41+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员