项目名称: 半导体纳米结构的表面增强拉曼散射效应研究及传感应用探索

项目编号: No.51272258

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 师文生

作者单位: 中国科学院理化技术研究所

项目金额: 80万元

中文摘要: 表面增强拉曼散射(SERS)由于具有很高的灵敏性和选择性,在传感领域有着广阔的应用前景。然而,因成本、生物兼容性以及可控性等方面的限制,目前基于电磁增强机制的贵金属(Au、Ag等)SERS并未在传感领域得到广泛的应用。我们在前期理论和实验探索的基础上,提出利用硅、锗和氧化锌半导体纳米结构与检测物之间的电荷转移机制实现SERS效应,从而克服贵金属SERS的应用限制,并以联吡啶钌和对乙酰氨基酚为检测目标,利用上述半导体纳米结构的SERS效应实现对这两种重要目标物高灵敏、高选择、高稳定检测。在此过程中,我们将探索这几种半导体纳米结构与检测物之间的电荷转移途径、方式及过程,通过对半导体材料、结构、表面以及制备工艺的优化,实现纳米结构基底与目标物之间高效电荷转移,并从理论上阐明基于电荷转移机制SERS的物理机理。研究结果将为发展基于电荷转移机制的新型SERS化学和生物传感器奠定坚实的实验和理论基础。

中文关键词: 表面增强拉曼散射;半导体;纳米棒阵列;化学传感器;光诱导电荷转移

英文摘要: The extremely high sensitivity and selectivity of surface enhanced Raman scattering (SERS) have attracted increasing attention in the field of sensor. However, the group 11 metals (Au, Ag, Cu) based SERS resulted from electromagnetic enhancement has not been developed as a practical technology in sensing field, due to their poor biocompatibility, high cost and difficulty in fabricating. Based on our previous theoretical and experimental studies, semiconductor-based SERS will be demonstrated by utilizing the photo-induced charge transfer (PICT) between the analytes and the nanostructured Si, Ge, and ZnO substrates under certain conditions, by which the limitation of group 11 metals (Au, Ag, Cu) based SERS in practical application would be overcome. Using silicon nanowire (SiNW), germanium nanotube (GeNT), and ZnO nanorod arrays as substrates, high sensitivity, selectivity and reproducibility of SERS signals of the important probes, dye (Bu4N)2[Ru(dcbpyH)2(NCS)2] (N719), and acetaminophen, would be rationally expected. In this research process, we will investigate the method, approach, and process of the PICT between these three semiconductor nanostructures and analytes. By tailoring the specific properties, optimizing parameters, and improving the preparation process, more efficient PICT process as well as strong

英文关键词: SERS;semiconductors;nanorod arrays;chemosensors;PICT

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
15+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月20日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
20+阅读 · 2021年9月21日
Arxiv
11+阅读 · 2021年3月25日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
小贴士
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
15+阅读 · 2021年10月4日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
36+阅读 · 2021年7月17日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员