项目名称: SOSS1复合体在DNA双链断裂修复过程中结合ssDNA及其它蛋白质的分子机制研究

项目编号: No.31470723

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 生物科学

项目作者: 宋海卫

作者单位: 浙江大学

项目金额: 95万元

中文摘要: DNA双链断裂(DSB)可能导致基因组重排和细胞死亡, 是最具有细胞毒性的DNA损伤方式之一。有缺陷的DSB修复将导致机体癌变、神经退行性疾病、免疫缺陷、心血管疾病以及一些代谢性综合症。同源重组(HR)是最有效的一种DSB修复方式。HR起始于在损伤处切割形成3'单链DNA(ssDNA)。ssDNA结合蛋白结合并保护暴露的ssDNA,同时参与DSB修复的信号传导。对该类蛋白进行结构和功能的研究将为阐释DSB修复的分子机理奠定坚实基础。最新研究发现单链DNA结合蛋白SOSSB1(hSSB1)和SOSSB2(hSSB2),可通过与SOSSA和SOSSC分别形成SOSS1和SOSS2复合体,参与DSB修复。本项目主要利用X-射线晶体衍射技术, 结合生物化学、生物物理及分子与细胞生物学的方法,研究SOSS1复合体识别ssDNA及与其他蛋白质的分子机制,阐明SOSS1复合体在DSB修复中的作用机制。

中文关键词: DNA双链断裂修复;SOSS复合物;ssDNA结合蛋白;晶体结构;分子机制

英文摘要: DNA double-strand breaks (DSBs) are highly toxic and can cause genome rearrangement and cell death. Defective DSB repair can cause cancer, neurodegenerative disorders, immune deficiencies, cardiovascular disease and metabolic syndrome. One of the pathways to repair DSB is homologous recombination (HR), which involves the resection of DSBs to generate a 3'-single-stranded DNA (ssDNA) overhang. ssDNA binding proteins(SSBs) are crucial for the protection of ssDNA and DSB signaling. Studies on them would provide fundamental insights into the mechanism of DSB repair. Recently, two ssDNA binding proteins SOSSB1 and SOSSB2 were reported to function at DSBs to form two separate heterotrimeric complexes with SOSSA and SOSSC, termed SOSS1 and SOSS2, respectively. SOSS1 and SOSS2 sense ssDNA and promote DSB repair and checkpoint activation. In this study, we will primarily use X-ray crystallography in conjunction with biophysical, biochemical, molecular and cell biology approaches to study the mechanism by which the SOSS1 complex recognizes ssDNA and interacts with other proteins during DSB repair.

英文关键词: DNA double-strand repair;SOSS complex;ssDNA binding proteins;Crystal structure;Molecular mechanism

成为VIP会员查看完整内容
0

相关内容

《人工智能在化学领域的应用全景》白皮书
专知会员服务
35+阅读 · 2022年1月22日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
85+阅读 · 2021年10月11日
专知会员服务
28+阅读 · 2021年8月27日
DeepMind《AlphaFold2蛋白质结构预测》CASP14介绍报告,42页ppt
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
人工智能预测RNA和DNA结合位点,以加速药物发现
已删除
将门创投
13+阅读 · 2019年4月17日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
46+阅读 · 2021年10月4日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
小贴士
相关主题
相关VIP内容
《人工智能在化学领域的应用全景》白皮书
专知会员服务
35+阅读 · 2022年1月22日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
85+阅读 · 2021年10月11日
专知会员服务
28+阅读 · 2021年8月27日
DeepMind《AlphaFold2蛋白质结构预测》CASP14介绍报告,42页ppt
【学科交叉】抗生素发现的深度学习方法
专知会员服务
24+阅读 · 2020年2月23日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员