项目名称: 面向云服务数据发布的结构匿名化隐私保护机制研究
项目编号: No.61300175
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 自动化技术、计算机技术
项目作者: 李浥东
作者单位: 北京交通大学
项目金额: 23万元
中文摘要: 隐私保护是我国构建一体化、自动化、智能化安全服务技术体系中的一个重要组成部分。近年来随着云计算的快速兴起,隐私保护技术也面临由云服务模式带来的诸多新挑战。其中,如何保护待发布数据不受以其结构信息为先验知识的背景知识攻击,已成为云计算数据隐私保护领域的一个亟待解决的问题。本项目将云计算中以图或超图进行建模的用户数据为研究对象,围绕云环境中结构信息的复杂性、动态性和海量性基本特征,重点解决动态信息高效匿名化、匿名化方法自适应和多属性数据集保护可用性等关键问题,拟通过分析云网络中节点间的关联性,建立基于网络结构的新型背景知识攻击模型;针对拓扑信息的海量性和局部易变性,设计面向海量数据的高效匿名化算法;考虑相似图发布的各类情形,研究基于相似性分析的可重构匿名化算法。从而为云环境中数据共享与发布提供有效的理论和技术支撑,促进匿名化技术在云数据安全中的实际应用,保障我国新型信息化经济模式的发展。
中文关键词: 云环境;隐私保护;匿名化;攻击模型;网络拓扑
英文摘要: Privacy Preservation is one of the essential components for creating an integrative, automotive and intelligent system for our national secure service. As one of the unique structural quasi-identifiers, the topology data has been proved to achieve background knowledge attacks in graph publishing with high feasibility. Therefore, it becomes an urgent problem to design and implement a family of efficient structure-based anonymizing algorithms to protect confidential data in cloud computing.In the proposed project, we will first analyze and condens the key features of structural information which include complexity, dynamic and massiveness in cloud environment. We provide a new background knowledge attack model on the basis of the network structure by analyzing the correlation among the nodes in the cloud network.Then we will design efficient,trustable and lightweight anonymizing algorithms for large-scale complex networks to against the proposed attacks. Furthermore, we will explore new methods to improve the flexibility of the proposed algorithms based on similarity analysis by considering particular scenarios in graph publishing.We will focus on three key scientific problems: designing anonymizing methods for dynamic data, improving ability of anonymization self-adaption, and maintaining utility in multi-attrib
英文关键词: cloud environment;Privacy protection;anonymize;Attack model;Network topology