项目名称: 基于大众选择的网络信息语义性甄别研究

项目编号: No.71273121

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 管理科学

项目作者: 李保珍

作者单位: 江苏科技大学

项目金额: 55万元

中文摘要: 用户生成内容(UGC)既增加了网络信息的虚假及冗余程度,又为网络信息的真伪甄别及其需求相关性甄别提供了可能性。为了克服虚假及冗余信息的干扰,本研究拟从用户生成内容的大众标注视角,基于其内在的大众选择机制,运用社会选择理论、群体选择理论、社会网社区划分理论、统计推断及模拟理论,构建网络信息的语义性甄别模型。主要工作有:(1)基于协同选择的用户需求与信息内容的交互效应及其协同选择机制分析;(2)基于关联选择的社区或领域性概念空间形成模型构建及其关联选择机制分析;(3)特定社区或领域性概念空间中信息内容与用户需求的甄别及匹配模型构建;(4)基于学习性选择的概念空间更新模型构建及其学习性选择机制分析;(5)基于实证研究、行为实验及仿真模拟,对相关机制及模型进行有效性评价。相关研究成果可丰富集体智慧、社会选择及群体选择等理论,并可为社会化搜索、个性化推荐及网络舆情监测等应用提供相关理论及方法。

中文关键词: 网络信息;网络用户;社会选择;语义空间;优化匹配

英文摘要: The approach of user generated content (UGC) can not only intensify the degree of false or redundant about Web information, but also provide possible condition for improving the objective reality and demand relevance in the process of Web information acquisition. To eliminate the interference of false or redundant Web information, this research try to construct semantical discrimination models by the theories of social choice, group selection, community partition of social network,and statistical inference and similation based on the related mechanisms of collective choice from the perspective of social annotation or comment about Web information in the process of user generated content.The main contents studied in this research are as follow: (1)Analyze the interactive effect between information content and user's demand based on collaberative choice, and analyze the mechanism of collaborative choice; (2)Construct the model about formation or evolution of community or domain concept space based on associative choice, and analyze the mechanism of associative choice; (3) Construct the model about discrimination or match of information content and user's demand in relevent community or domain concept space; (4)Constuct the model about evolutive update of concept space based on learning choice, and analyze the mec

英文关键词: Web information;Web user;Collective choice;Semantic space;optimal matching

成为VIP会员查看完整内容
0

相关内容

面向任务型的对话系统研究进展
专知会员服务
57+阅读 · 2021年11月17日
专知会员服务
56+阅读 · 2021年8月12日
专知会员服务
55+阅读 · 2021年4月20日
专知会员服务
53+阅读 · 2021年4月3日
跨媒体分析与推理技术研究综述
专知会员服务
69+阅读 · 2021年3月11日
专知会员服务
45+阅读 · 2020年11月13日
基于旅游知识图谱的可解释景点推荐
专知会员服务
90+阅读 · 2020年9月4日
用户画像场景与技术实现
专知
5+阅读 · 2022年3月25日
文本情感分析方法研究综述
专知
4+阅读 · 2021年4月20日
基于深度学习的流行度预测研究综述
专知
0+阅读 · 2021年3月24日
【情感分析】情感分析研究的新视野
深度学习自然语言处理
15+阅读 · 2020年3月10日
支持个性化学习的行为大数据可视化研究
网络舆情分析
计算机与网络安全
20+阅读 · 2018年10月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月28日
Reappraising Domain Generalization in Neural Networks
Arxiv
0+阅读 · 2022年4月28日
Arxiv
92+阅读 · 2021年5月17日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关VIP内容
面向任务型的对话系统研究进展
专知会员服务
57+阅读 · 2021年11月17日
专知会员服务
56+阅读 · 2021年8月12日
专知会员服务
55+阅读 · 2021年4月20日
专知会员服务
53+阅读 · 2021年4月3日
跨媒体分析与推理技术研究综述
专知会员服务
69+阅读 · 2021年3月11日
专知会员服务
45+阅读 · 2020年11月13日
基于旅游知识图谱的可解释景点推荐
专知会员服务
90+阅读 · 2020年9月4日
相关资讯
用户画像场景与技术实现
专知
5+阅读 · 2022年3月25日
文本情感分析方法研究综述
专知
4+阅读 · 2021年4月20日
基于深度学习的流行度预测研究综述
专知
0+阅读 · 2021年3月24日
【情感分析】情感分析研究的新视野
深度学习自然语言处理
15+阅读 · 2020年3月10日
支持个性化学习的行为大数据可视化研究
网络舆情分析
计算机与网络安全
20+阅读 · 2018年10月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员