项目名称: 结合社会网络的网络信息传播分析研究
项目编号: No.61202337
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 计算机科学学科
项目作者: 唐晋韬
作者单位: 中国人民解放军国防科学技术大学
项目金额: 25万元
中文摘要: Web2.0时代,新型社会媒体不断涌现,深刻地改变了人们信息交流的方式。社会媒体中的信息传播主要由用户的社会交往行为驱动,呈现出文本质量参差不齐、数据规模迅速增长、热点信息快速扩散、信息内容动态演化等新特征,为科学研究和实际应用带来了新的挑战。本项目将通过有机结合社会网络分析和信息传播分析,从面向用户生成内容的语义表示和相似度计算方法、面向社会媒体的热点信息挖掘方法、基于社会网络的信息传播分析方法等三个方面开展研究,拟提出结合外部语义资源的文本表示模型、融合语义相关性和社会特征的热点话题发现方法、结合社会网络分析的信息传播跟踪与分析方法,力求在网络文本语义特征建模、大规模社会媒体数据中的热点信息发现、社会网络与信息传播的相互作用等关键科学问题的研究中获得进展和突破。本项目将形成面向社会媒体进行信息传播挖掘与分析的一系列方法和关键技术,为深化互联网信息的挖掘与分析提供支持。
中文关键词: 社会媒体;信息传播;热点话题发现;网络结构;用户倾向性
英文摘要: In Web2.0 era, various Social Medias are constantly emerging, which has profound influence not only to our lifestyle, but also to the way we work and communicate with each other. The information spread in Social Medias is primarily driven by the user's communication behavior, which make the User Generated Contents (UGC) usually are short and noisy, the dataset is at a tremendously scale, and the topics are rapid diffused and evolved in social medias.These features bring some new chanllenges for information diffusion analysis. Based on the characteristics of Social Medias, this project focuses on issues related to social network analysis and information diffusion analyis. More specifically, the project targeted to answer three main questions. That is, how to model the semantic of user generated contents, how to detect and track the topics in large-scale nosiy data of social media , and how to characterize the information diffusion in social media. The goal of this project contains three research emphases: the appropriate representation model and semantic similarity measure for short and noise user-generated contents, the social media oriented topic detection and tracking method, and the inforamtion diffusion analysis based on the social network analysis. We are expecting to archive these goals through the followi
英文关键词: Social Media;Information Diffusion;Topic Detection;Network Structure;User Trendency