项目名称: 航天钛合金紧固件的表面改性及其磨损机制研究

项目编号: No.U1537108

项目类型: 联合基金项目

立项/批准年度: 2016

项目学科: 机械、仪表工业

项目作者: 康嘉杰

作者单位: 中国地质大学(北京)

项目金额: 55万元

中文摘要: 航天科技的飞速发展对材料的性能提出了巨大的挑战。航天装备上的钛合金紧固件在空间环境中发生的磨损失效制约了其使用性能,并影响航天装备的服役安全。本项目提出以创新性的“表面纳米化+离子渗氮+激光表面图案化”复合表面改性技术对钛合金表面进行强化;挖掘表面复合改性层的成膜机理,研究复合表面改性处理对钛合金表面组织结构和力学性能的影响机制;基于真空摩擦磨损试验机和微动摩擦学实验平台分析复合改性层的真空摩擦学性能及磨损失效机制;通过数理统计方法对改性层的磨损寿命数据进行处理,建立钛合金在空间高真空环境中的磨损寿命演变模型。研究成果将为航天钛合金紧固件的表面性能提升和服役寿命延长提供有益的技术支持和理论支撑。

中文关键词: 钛合金紧固件;表面改性;真空;摩擦学性能;磨损机制

英文摘要: The rapid development of space science and technology has made a great challenge to the performance of the material. The wear failure of the titanium alloy fasteners in the space environment has restricted its performance and affected the safety of the space equipment. In this project, titanium alloy will be enhanced by a novel composite surface modification technology of surface crystallization + ion nitriding + laser surface texturing. The forming mechanism of the surface modified layer will be studied. The effect of surface modification on microstructure and mechanical properties of titanium alloy will be analyzed. The tribological properties and wear failure mechanism of composite modified layer will be evaluated based on vacuum friction and wear testing machine as well as fretting wear testing machine. The wear life data of the modified layer will be treated by the method of mathematical statistics in order to establish the wear life model of titanium alloy in high vacuum environment. The research results can provide scientific guidance and technical support to the surface performance improvement and service life extension of titanium alloy fasteners on aerospace equipments.

英文关键词: Titanium alloy fastener;Surface modification;Vacuum;Tribological property;Wear mechanism

成为VIP会员查看完整内容
0

相关内容

军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
数字建筑发展白皮书(2022年)
专知会员服务
41+阅读 · 2022年4月1日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
61+阅读 · 2022年3月20日
信息物理融合系统 (CPS)研究综述
专知会员服务
45+阅读 · 2022年3月14日
城市大脑案例集(2022),114页pdf
专知会员服务
111+阅读 · 2022年1月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月19日
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
是什么原因让你不想换手机?
ZEALER订阅号
0+阅读 · 2022年2月12日
iPhone 13 系列电池续航优势领先 | Surface Pro 8 开启预售
ZEALER订阅号
0+阅读 · 2021年10月12日
你会给手机带保护壳吗?
ZEALER订阅号
0+阅读 · 2021年10月11日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
小贴士
相关主题
相关VIP内容
军事知识图谱构建技术
专知会员服务
125+阅读 · 2022年4月8日
数字建筑发展白皮书(2022年)
专知会员服务
41+阅读 · 2022年4月1日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
61+阅读 · 2022年3月20日
信息物理融合系统 (CPS)研究综述
专知会员服务
45+阅读 · 2022年3月14日
城市大脑案例集(2022),114页pdf
专知会员服务
111+阅读 · 2022年1月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月19日
新时期我国信息技术产业的发展
专知会员服务
69+阅读 · 2020年1月18日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员