项目名称: 不引入低表面能有机物修饰的金属基底超疏水性微纳米表面的可控生长

项目编号: No.21271027

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 卢士香

作者单位: 北京理工大学

项目金额: 75万元

中文摘要: 在金属表面上制备具有微纳米双微观结构的超疏水表面,是新型功能材料领域有待深入研究的重要分支。本项目致力于在金属铁、铜、银、锌、铝及合金等基底上制备超疏水微纳米表面,以获得具备防污染、防腐蚀、自清洁、减阻等高性能的界面功能材料。通过仿生自然材料法,利用多种技术手段,在不引入低表面自由能物质情况下就可以简单有效地获得具有特殊功能的超疏水表面;通过有限元法对超疏水性表面结构进行优化,建立液滴、微纳米材料、气体三相的相互作用模型,精确并形象地刻画出微纳米材料在各种形貌下的疏水性,得到最佳的微纳米材料形貌设计参数;深入考察超疏水表面微纳结构的几何形貌、尺寸与表面润湿性,尤其是与接触角滞后的直接定量关系,揭示超疏水机理,进而利用优化表面微观结构的技术参数来指导超疏水表面的可控性制备。研究所制备超疏水表面的各种性能,以实现在国防、工农业生产以及日常生活中的应用。

中文关键词: 超疏水性;金属;表面;微纳米结构;可控生长

英文摘要: Superhydrophobic surfaces with micro/nano structure that made on metal are important part of new material. This project is bend ourself to prepare superhydrophobic surfaces on Al, Zn, Ag, Cu, Fe and alloy. Superhydrophobic surfaces with water-repellency, self-cleaning, anti-erosion and anti-pollution properties have attracted a great deal of interest in both academic and industrial research efforts.The Superhydrophobic surfaces with special function will be obtained by simple and effective method without any additional low-surface-energy modification. Parameters of morphic design of superhydrophobic surfaces by Finite Element Analysis(FEA).The FEA can finish modeling of liquid drop, material and ges. The FEA can visualize superhydrophobic surfaces at various morphic micro/nano structure accurately, and then establish quantitative connection of topography, size, wettability, and even contact angle hysteresis. The mechanism how the superhydrophobic surfaces form can also be opened out by FEA.The optimizing technical parameters of superhydrophobic surfaces can be used to direct the control growth of superhydrophobic surfaces. The properties of the superhydrophobic surfaces will be studied, and then the application of superhydrophobic surfaces can be come true in our daily life and industrial applications.

英文关键词: superhydropobic;metal;surface;micro-nano structure;control growth

成为VIP会员查看完整内容
0

相关内容

Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
211+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
143+阅读 · 2021年2月3日
专知会员服务
182+阅读 · 2020年11月23日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
AI从底物和酶的结构中预测米氏常数,量化酶活性
你会给手机带保护壳吗?
ZEALER订阅号
0+阅读 · 2021年10月11日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
小贴士
相关主题
相关VIP内容
Nat. Mach. Intell. | 分子表征的几何深度学习
专知会员服务
24+阅读 · 2021年12月26日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
211+阅读 · 2021年8月2日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
143+阅读 · 2021年2月3日
专知会员服务
182+阅读 · 2020年11月23日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
10+阅读 · 2020年11月26日
Arxiv
38+阅读 · 2020年3月10日
Generative Adversarial Networks: A Survey and Taxonomy
微信扫码咨询专知VIP会员