项目名称: 基于碳纳米管的极低开启电压二极管及其射频电路

项目编号: No.61401006

项目类型: 青年科学基金项目

立项/批准年度: 2015

项目学科: 纳电子学

项目作者: 丁力

作者单位: 北京大学

项目金额: 8万元

中文摘要: 二极管在射频电路中有着及其重要和广泛的应用,传统的二极管普遍具有较高开启电压,在射频电路都需要施加直流偏置电压。这不仅增加电路设计难度,也增加静态功耗。本项目拟充分利用碳纳米管材料和器件的优势,制备具有极低开启电压的二极管,并探索其在射频电路、特别是电磁波探测电路和能量收集电路方面的应用。主要研究内容包括(1)利用极低阈值电压的碳纳米管场效应晶体管实现开启电压小于0.1 V的二极管,(2)基于这种二极管,设计和制备无需直流偏置的高性能全波整流电路,(3)利用这种二极管的高效整流电路,设计和制备频率探测电路,提高频率探测器的分辨率和灵敏度。电压响应度要大于10V/W,噪声等效功率要低于50pW/(Hz^0.5)。

中文关键词: 纳电子学;碳纳米管;场效应晶体管;二极管;整流电路

英文摘要: Diodes are very important for radio frequency circuits and have wide application. But a relative high turn-on voltage exists in conventional diodes so that a DC bias is needed for efficiency in radio frequency circuits which results in complexity of circuit design and extra static power dissipated. In this project, we propose to fabricate ultra-low turn-on voltage diodes based on carbon nanotube of advantage and explore its application in radio frequency circuit, especially microwave detection and energy harvester circuits. The research works should focus on three aspects as follows: (1) realize less than 0.1 V turn-on voltage diodes by small threshold voltage CNTFET (Carbon Nanotube Field Effect Transistor), (2) design and fabricate high performance full-wave rectifier without DC bias by this kind of diodes, (3) based on this high efficiency rectifier circuits, design and fabricate frequency detection circuits and improve resolution and sensitivity. Voltage sensitivity of detectors should be better than 10V/W and NEP (Noise Equivalent Power) is less than 50pW/(Hz^0.5). Explore this diode application in microwave energy harvester, improve the efficiency of power conversion and further reduce least convertible signal energy. Try to realize more than 40% conversion efficiency and less than -10dBm least conversion

英文关键词: Nanoelectronics;Carbon Nanotube;Field Effect Transistor;Diode;Rectifier Circuits

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
5G赋能,民用引领,无人机产业迎来新变革,35页报告
专知会员服务
36+阅读 · 2022年3月20日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
60+阅读 · 2022年3月20日
阿里达摩院十大科技趋势报告,31页pdf
专知会员服务
66+阅读 · 2021年12月29日
专知会员服务
12+阅读 · 2021年9月13日
专知会员服务
34+阅读 · 2021年5月10日
知识图谱更新技术研究及其应用,复旦大学硕士论文
专知会员服务
103+阅读 · 2019年11月4日
物理外挂!今年华为 5G 手机有戏了?
ZEALER订阅号
0+阅读 · 2022年3月13日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
12+阅读 · 2022年4月12日
AliCoCo: Alibaba E-commerce Cognitive Concept Net
Arxiv
13+阅读 · 2020年3月30日
Arxiv
12+阅读 · 2018年1月12日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
16+阅读 · 2022年4月15日
5G赋能,民用引领,无人机产业迎来新变革,35页报告
专知会员服务
36+阅读 · 2022年3月20日
基于 5G 通信技术的无人机立体覆盖网络白皮书
专知会员服务
60+阅读 · 2022年3月20日
阿里达摩院十大科技趋势报告,31页pdf
专知会员服务
66+阅读 · 2021年12月29日
专知会员服务
12+阅读 · 2021年9月13日
专知会员服务
34+阅读 · 2021年5月10日
知识图谱更新技术研究及其应用,复旦大学硕士论文
专知会员服务
103+阅读 · 2019年11月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员