项目名称: 化铣结构疲劳失效机理及化铣表面喷丸强化机理研究

项目编号: No.50805118

项目类型: 青年科学基金项目

立项/批准年度: 2009

项目学科: 金属学与金属工艺

项目作者: 刘军

作者单位: 西北工业大学

项目金额: 21万元

中文摘要: 本项目针对化铣件表面层的特点,以航空结构件常用的2024铝合金板材为例,通过理论分析和试验,系统地研究化铣结构疲劳失效机理及化铣表面喷丸强化机理。研究化铣表面状态的表征参数,以及化铣深度、形状对表面状态表征参数的影响。基于晶体塑性理论,建立含缺陷表面层的裂纹形核、扩展的微观模型, 从而确定化铣结构表面层表征参数以及疲劳寿命描述模型。进一步针对化铣结构表面开展喷丸强化工艺和强化机理研究,提出适合不同深度和形状的化铣结构的喷丸强化工艺,以及相应的疲劳寿命评定模型。该项研究完整地得到化铣结构疲劳寿命评定模型方法和化铣结构的喷丸工艺和评定模型,具有一定的理论价值和较大的工程应用需求。

中文关键词: 化铣;疲劳;铝合金;失效机理;喷丸强化

英文摘要: This project investigated the fatigue failure mechanism and the shot peening enhancement mechanism of the chemical milled Aluminum 2024 sheet. The surface morphology after chemical milling was quantified. The effect of milling depth and shape on the surface morphology parameters was investigated. The finite element model of micro crack nucleation and propagation on the surface containing defects was built using crystallographic plasticity theory to establish the surface characterization parameters and fatigue life prediction model. The shot peening process technology and its strength enhancement mechanism was investigated.The shot peening technologies fit for different milling depth and shape as well as their fatigue life prediction models were proposed.This project developed the fatigue life prediction model for milling structures,evaluation model of shot peening process.This research has a certain thoeretical value and exhibits a prospective engingeering application.

英文关键词: Chemical milling; Fatigue; Aluminum alloy; Failure mechanism; shot peening

成为VIP会员查看完整内容
0

相关内容

深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
31+阅读 · 2021年5月7日
基于深度学习的行人检测方法综述
专知会员服务
68+阅读 · 2021年4月14日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
103+阅读 · 2020年11月27日
专知会员服务
34+阅读 · 2020年11月26日
基于深度学习的表面缺陷检测方法综述
专知会员服务
85+阅读 · 2020年5月31日
真实惠不套路,OPPO 不套路 11.11 发布会
ZEALER订阅号
0+阅读 · 2021年10月18日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2019年3月14日
小贴士
相关主题
相关VIP内容
深度生成模型综述
专知会员服务
51+阅读 · 2022年1月2日
专知会员服务
97+阅读 · 2021年6月23日
专知会员服务
31+阅读 · 2021年5月7日
基于深度学习的行人检测方法综述
专知会员服务
68+阅读 · 2021年4月14日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
103+阅读 · 2020年11月27日
专知会员服务
34+阅读 · 2020年11月26日
基于深度学习的表面缺陷检测方法综述
专知会员服务
85+阅读 · 2020年5月31日
相关资讯
真实惠不套路,OPPO 不套路 11.11 发布会
ZEALER订阅号
0+阅读 · 2021年10月18日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
17+阅读 · 2019年3月28日
Arxiv
12+阅读 · 2019年3月14日
微信扫码咨询专知VIP会员