项目名称: 非金属掺杂Cu2(1-x)ZnxO/TiO2纳米管异质结构的构筑及其可见光制氢和催化性能研究

项目编号: No.11304120

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 徐锡金

作者单位: 济南大学

项目金额: 30万元

中文摘要: 实现光催化材料对可见光的吸收在能源及环境治理等方面具有重要的意义,新型TiO2管状异质结构的制备及修饰是拓展其对可见光吸收进而提高太阳光制氢及污水降解经济有效的途径之一。本项目拟采用电化学、水热、溶胶凝胶等方法,针对TiO2管状结构量子产率低及带隙宽等问题进行研究,利用不同组分比的窄/宽带隙半导体(Cu2O、ZnO)对TiO2及其非金属元素(C、N、S)掺杂后的管状结构进行共修饰,以提高该复合异质结构的光量子化产率、抑制它的光生空穴电子对的复合率。这种新型的非金属元素掺杂的Cu2(1-x)ZnxO/TiO2管状异质结构,由于元素的掺杂可以调节其带隙宽度,加上半导体氧化物的共修饰,能实现对太阳光的吸收由紫外光拓展到可见光区,并有效实现光生载流子的分离与传输。我们进一步探索该异质结构的界面性质和能级结构,从而提高制氢及污水降解的效率,揭示异质结构的催化机理,为其应用提供实验基础。

中文关键词: 氧化钛;半导体氧化物修饰;异质结构;催化剂;

英文摘要: It is of great importance to realize the photocatalysts which can absorpt wide visible light to solve the energy and environmental problems. The syntheses and modifications of TiO2 tubular complex micro/nano-heterostructures are one of the cost-effective ways to expand their absorption abilities from UV light to visible light in order to produce hydrogen or degrade waste water. In this proposal, we will focus on the main problems, such as low quantum yield and wide band gap of TiO2 structures, and try to improve the fabrication methods and conditions, such as electrochemical-, hydrothermal/solvothermal- and sol-gel methods, etc, to get the visible-light-driven TiO2 structures with different tubular morphologies, dimensions and crystal structures. By modifying the TiO2 nano/micro- nanostructures with Cu2O, ZnO semiconductor in different components and non-metal elements(C,N,S) doping, we can improve the quantum yields, suppress the recombination of light generated hole-electron pair and adjust the band-gap to extend the light absorption from the UV region into the visible region. This novel non-metal doped Cu2(1-x)ZnxO/TiO2 tubular composites heterostructures can optimize the absorption of wide visible spectral, and achieve separation and transmission of light-generated carriers effectively based on the elements-

英文关键词: Titanium dioxide;Semiconductor modification;Heterostructures;Photocatalysts;

成为VIP会员查看完整内容
0

相关内容

严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
23+阅读 · 2021年6月19日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
63+阅读 · 2021年5月2日
专知会员服务
71+阅读 · 2021年3月27日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
16+阅读 · 2020年5月20日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
严新平院士:智能交通发展的现状、挑战与展望
专知会员服务
30+阅读 · 2022年3月17日
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
23+阅读 · 2021年6月19日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
63+阅读 · 2021年5月2日
专知会员服务
71+阅读 · 2021年3月27日
相关资讯
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员