项目名称: 石墨烯等离子体晶体:能带的非线性调控和格子孤子

项目编号: No.61475101

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 叶芳伟

作者单位: 上海交通大学

项目金额: 72万元

中文摘要: 石墨烯材料由于其二维特性、对强局域和低损耗的表面等离子体激元的支持、高度可调的表面电导率和极强的非线性响应特性成为一种地位非常特殊的光学材料。石墨烯的周期性排布结构(我们称之为石墨烯等离子体晶体),通过将石墨烯材料的上述优异光学性能引入到周期体系中,可望在纳米尺度上为有效地控制光和电磁波提供前所未有的机遇。本项目提出石墨烯等离子体晶体的非线性特性的理论研究,探索石墨烯的极强的非线性效应对周期纳米结构的各种特殊能带关系的调控特别是Dirac点的调控,研究在深度亚波长的尺度上对光束和电磁波的主动的功能性操作,以及跟Dirac点密切相关的相对论量子力学现象Zitterbewegung效应的光学模拟和非线性调控。本项目还将研究石墨烯等离子体晶体支持的空间孤子,挖掘石墨烯材料赋予它们的各种新的特性,探索其高度的可调性。

中文关键词: 表面等离子体激元;石墨烯;Dirac;点;空间光孤子

英文摘要: Due to its truly two-dimensional(2D) nature, accommodation of extremely localized/low lossy Surface Plamonic Polaritons(SPPs) and highly tunable surface conductivity coefficient as well as the unusually strong nonlinear optical effect, graphene has emerged as a very unique optical and photonic material. Graphene-based plasmonic crystal, i.e. , the periodic array of graphene layers, through the introduction of the unique and excellent optical properties of graphene into the periodic system, may provide unprecedented opportunities on the control over the light/electromagnetic waves at the nano-scale. We propose the research on nonlinear graphene-based plasmonic crystal. We aim to study the active tunability on the bandgap structure(especially the Dirac point) by using the strong nonlinear effect of the graphene, demonstrate the active control of light/electromagnetic waves at the deeply-subwavelengthed scale, as well as the optical analogy of and nonlinear manipulation over relativistic quantum mechanics effect(Zitterbewegung) originating from Dirac point . We will also study various spatial solitons in the nonlinear graphene-based plasmonic crystal and reveal their unique and novel properties, including their tunability thanks to the graphene.

英文关键词: Surface Plasmonic Polaritons;Graphene;Dirac point;Spatial Optical Solitons

成为VIP会员查看完整内容
0

相关内容

机器学习中原型学习研究进展
专知会员服务
45+阅读 · 2022年1月18日
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
专知会员服务
99+阅读 · 2021年8月23日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
专知会员服务
38+阅读 · 2021年2月8日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
37+阅读 · 2020年8月22日
专知会员服务
28+阅读 · 2020年8月8日
时间晶体,直到世界尽头的浪漫
学术头条
0+阅读 · 2022年3月12日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
30+阅读 · 2021年6月30日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
26+阅读 · 2018年9月21日
小贴士
相关VIP内容
机器学习中原型学习研究进展
专知会员服务
45+阅读 · 2022年1月18日
【AAAI 2022】神经分段常时滞微分方程
专知会员服务
33+阅读 · 2022年1月14日
专知会员服务
99+阅读 · 2021年8月23日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
专知会员服务
38+阅读 · 2021年2月8日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
37+阅读 · 2020年8月22日
专知会员服务
28+阅读 · 2020年8月8日
相关资讯
时间晶体,直到世界尽头的浪漫
学术头条
0+阅读 · 2022年3月12日
前所未有:用AI控制核聚变,DeepMind再登Nature
学术头条
0+阅读 · 2022年2月17日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员