项目名称: 有机半导体径向异质结一维纳米材料的制备及其光电特性研究

项目编号: No.51273020

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 徐新军

作者单位: 北京科技大学

项目金额: 80万元

中文摘要: 一维有机半导体纳米材料由于具有许多独特的光电特性因而在纳米光电器件领域有着美好的应用前景。目前,绝大多数有关一维有机半导体纳米材料的研究工作是围绕着单一化合物生长得到的同质结构开展的。然而,同质一维有机半导体纳米材料在光照下产生的激子一般不容易发生有效的电荷分离,导致其光电活性通常较差。为了解决此问题,我们计划合成具有特定结构的有机电子给/受体材料,通过其分子间的反应或相互作用,制备出具有径向异质结结构的一维有机半导体纳米材料。此异质结由电子给体-纳米级绝缘间隔-电子受体所组成,一方面可以增大电子给/受体的接触界面,另一方面可以抑制界面处电子的回传过程,从而改善纳米材料的光电活性。研究此种径向异质结一维纳米结构的光电性质。通过调查影响此种径向异质结一维纳米结构形貌的因素,了解并掌握调控其形貌的手段,探索径向异质结一维有机半导体纳米材料的组成及结构与有机光电器件性能之间的关系。

中文关键词: 径向异质结;有机半导体;一维微纳材料;电子给受体;有机光电器件

英文摘要: One-dimensional (1D) organic semiconductor nanomaterials have brilliant and promising applications in nanoscale optoelectronic devices benefitted from their unique characteristics. Currently, most of the research works concerning about 1D organic semiconductor nanomaterials are focused on the homogeneous structure of single-component compounds. However, charge separation of the excitons formed in homogeneous 1D organic semiconductor nanomaterials under light radiation is not effective in most cases. As a result, the optoelectronic properties of these nanomaterials are usually not satisfying. To solve this problem, we plan to synthesize some organic electron donors and acceptors with specific molecular structures which can be utilized to fabricate 1D organic semiconductor nanomaterial with a radial heterojunction through intermolecular reactions or interactions between electron donors and acceptors. Such a heterojunction comprises electron donor, nanoscale insulating separator, and electron acceptor. On the one hand, this kind of heterojunction can increase the contact interface between electron donors and acceptors; on the other hand, it can suppress the back-transfer process of electrons at the contact interface. So the optoelectronic properties of 1D nanomaterials can be improved. In this project, the optoelec

英文关键词: radial heterojunction;organic semiconductor;one-dimensional micro/nanomaterial;electron donor and acceptor;organic optoelectronic devices

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
44+阅读 · 2021年8月5日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
11+阅读 · 2021年3月25日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
44+阅读 · 2021年8月5日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
55+阅读 · 2021年6月30日
专知会员服务
31+阅读 · 2021年5月7日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员