项目名称: 树脂载体纳米孔内水合氧化铁表面化学性质及其吸附特性研究

项目编号: No.21507060

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 化学工业

项目作者: 聂广泽

作者单位: 南京工业大学

项目金额: 21万元

中文摘要: 将金属氧化物固载在大颗粒的多孔载体内制备的复合吸附剂结合了载体材料优良的水力学性质与金属氧化物对无机污染物的良好去除性能,该类吸附剂因其良好的应用前景备受关注。但目前对载体纳米限域空间内金属氧化物性质的变化,以及由此产生的吸附性能差异却关注甚少,也缺乏成熟的研究手段。本项目拟以离子交换树脂固载水合氧化铁(HFO)为研究对象,以宏观实验方法、现代光谱学表征技术以及复合材料吸附数学模型等技术方法为研究工具,解析典型污染物离子在复合材料上的吸附行为,重点考察树脂载体物理化学结构,包括骨架、交联度、孔径、官能团等对HFO表面化学性质和吸附性能的影响规律,阐明HFO因负载而受到的纳米空间限制及载体的作用而表现出的吸附性能差异,从而为同类环境复合材料的优化设计与实际应用提供理论依据。

中文关键词: 水合氧化铁;纳米复合材料;纳米孔;表面化学性质;吸附模型

英文摘要: The hybrid materials prepared by impregnating metal oxides particles into solid supports of porous structure would retain the inherent properties of metal oxides and the satisfactory hydrodynamic performance of support materials. They are expected to be excellent sorbents in water treatment and have aroused more and more interest. However, little is known on the changes of intrinsic physicochemical properties and adsorption reactivity of the encapsulated metal oxides particles in nanopores. In this study, hybrid sorbents of polymer-supported HFO, i.e., prepared by dispersing nanosized hydrous ferric oxides (HFO) within ion exchange resin are chosen as case study. Based on the macroscopic experimental data sets and spectroscopic study, a mathematical model includes ion exchange and surface complexation reactions is developed. Then the model is used to describe adsorption behavior of the hybrid materials, and to quantitatively evaluate the surface chemistry and adsorption performance variations of the loaded HFO caused by different physicochemical properties of the hosts, such as matrix structure, cross-link densities, pore size, and functional group. The results of this study may provide an insight into the preparation of nanocomposite materials for environmental remediation.

英文关键词: Hydrous ferric oxide;Nanocomposite;Nanopore;Surface chemistry;Adsorption modeling

成为VIP会员查看完整内容
0

相关内容

无人机地理空间情报在智能化海战中的应用
专知会员服务
114+阅读 · 2022年4月14日
专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
29+阅读 · 2021年9月30日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
11+阅读 · 2021年5月25日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年4月12日
专知会员服务
69+阅读 · 2021年3月29日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
一派讨论·你最爱的冷笑话是什么
少数派
0+阅读 · 2021年12月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年5月15日
Privacy Preserving Release of Mobile Sensor Data
Arxiv
0+阅读 · 2022年5月13日
Arxiv
0+阅读 · 2022年5月13日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
小贴士
相关VIP内容
无人机地理空间情报在智能化海战中的应用
专知会员服务
114+阅读 · 2022年4月14日
专知会员服务
78+阅读 · 2021年10月19日
专知会员服务
29+阅读 · 2021年9月30日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
11+阅读 · 2021年5月25日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
29+阅读 · 2021年4月12日
专知会员服务
69+阅读 · 2021年3月29日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
2022 年你最想拥有什么电子产品?
ZEALER订阅号
0+阅读 · 2022年1月9日
一派讨论·你最爱的冷笑话是什么
少数派
0+阅读 · 2021年12月14日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
【质量检测】机器视觉表面缺陷检测综述
产业智能官
30+阅读 · 2018年9月24日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员