项目名称: 基于TiO2的一维核壳阵列结构的调控制备及其在光伏器件中的应用研究

项目编号: No.61504073

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 曲晓飞

作者单位: 青岛科技大学

项目金额: 20万元

中文摘要: 有机无机杂化太阳能电池结合有机材料高光敏性和无机材料高迁移率的优点,是太阳能利用的一个重要研究方向。但是由于大多数有机半导体材料禁带宽度较大,光谱吸收范围较窄,有机材料和无机材料之间不能形成良好的界面,导致杂化太阳能电池的光电转换效率较低。本项目在ITO导电玻璃上以阳极氧化铝(AAO)膜为模板调控制备的一维TiO2纳米管及纳米棒阵列为电子传输通道,不同的无机半导体PbS、Ag2S、CdTe等为敏化剂,聚合物半导体P3HT、PTB7为吸光和空穴传输材料,构建新型的三组分一维核壳式纳米阵列结构。一维核壳阵列结构可以增加电荷生成层与电荷传递层之间的界面面积,有利于提高电荷传输效率。同时,通过半导体敏化、界面修饰等方式,系统研究影响核壳结构杂化光伏器件光电转换效率的影响机制,实现阵列形貌、吸光性能、能级结构、界面性质与器件光伏性能的有机统一,为太阳能电池的发展提供一种新思路。

中文关键词: 有机无机杂化;TiO2;同轴核壳纳米阵列;界面修饰;光电性能

英文摘要: The organic/inorganic hybrid solar cells, which own the advantages of the high light sensitivity from the organic materials and the high charge carriers migration rate from the inorganic materials, have become a research orientation in the utilization of solar energy. But, for most of the organic semiconductors, the light absorption is limited because of their wide band gap; In addition, the interface between the organic and inorganic materials is not perfect enough, so the separation, transportation and collection of the photogenerated carriers may be impaired. The problems mentioned above have resulted in the low efficiency for the organic/inorganic hybrid solar cells. In this project, TiO2 nanotubes or nanorods will be prepared on the ITO glasses using the porous anodic aluminum oxide (AAO) membranes as the templates. A new structure of one-dimensional arrays with coaxial core-shell structure consisting of three different materials will be synthesised, where TiO2 nanotubes or nanorods act as photogenerated electrons transporting channels, the other inorganic semiconductors (PbS, Ag2S, CdTe) work as the sensitizers and organic semiconductors (P3HT, PTB7) work as the light absorption and hole transporting materials. The coaxial core-shell structure can increase the interface areas between the charge-generating and charge-transporting layers and improve the efficiency of charge transportation. In addition, by the semiconductor sensitization, interface modification and other means, the mechanism that influences the photovoltaic conversion efficiency for the coaxial core-shell heterjunction hybrid photovoltaic devices will be investigated. The effects of the arrays morphologies, light absorption properities, energy levels, interface properties on the photovoltaic performances for the devices will be studied systematically. The new structure and the discussion between the structure and the photovoltaic performance will provide a new idea for the development of the solar cells.

英文关键词: Organic/inorganic hybrid;Titanium dioxide;Coaxial core-shell nanotube/nanorod arrays;Interface modification;Photoelectric property

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
RIS-Assisted Cooperative NOMA with SWIPT
Arxiv
0+阅读 · 2022年4月18日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
20+阅读 · 2021年5月1日
【KDD2020-阿里】可调控的多兴趣推荐框架
专知会员服务
28+阅读 · 2020年8月11日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员