项目名称: 稀土离子掺杂铌酸锂晶体薄膜波导的研究

项目编号: No.61205055

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 信息四处

项目作者: 李士玲

作者单位: 曲阜师范大学

项目金额: 28万元

中文摘要: 稀土元素离子掺杂材料是研制光有源器件的基础之一。稀土离子掺杂波导结构可用作光放大器和激光有源元件。近化学计量比铌酸锂晶体(NSLN)薄膜具有许多独特的优点,它可以实现衬底与薄膜间陡峭的折射率界面和大的折射率差, 方便地对薄膜进行选择性的掺杂,使铌酸锂薄膜波导成为光有源多功能器件。本项目旨在研究在不同低折射率衬底材料上,探索用溅射,以富锂稀土元素掺杂的铌酸锂陶瓷为靶材,制备稀土元素离子(如铒)掺杂NSLN晶体薄膜,研究薄膜的表面形貌、薄膜结构,测试薄膜厚度,荧光光谱。研究制备参数(如溅射过程中充入的气体、气体气氛压强及衬底温度等)对成膜质量的影响,找出制备优良晶体薄膜波导的条件。并结合超快激光微加工术制备脊型波导,测试近场光强分布,损耗,荧光光谱等。为实现波导放大器、波导激光奠定基础,有利于波导器件的集成化。

中文关键词: 光波导;稀土离子掺杂;荧光;高折射率对比材料;飞秒激光微加工

英文摘要: Rare earth ion-doped materials are one of the bases for fabrication of optical active devices. Rare earth ion-doped waveguide would be used as active components, such as optical amplifiers and lasers. Near stoichiometric lithium niobate crystal (NSLN) film has many unique advantages, such as, the steep refractive index interface and large refractive index difference between the substrate and the film, the film can be conveniently selective doped. Therefore, lithium niobate film optical waveguide become active multi-function devices. The project aims to employ sputtering technology to grow rare earth ion-doped NSLN crystal films on different low refractive index substrates by using lithium-richer rare earth ion-doped lithium niobate ceramic as target. Moreover, the film surface morphology, film structure, film thickness and fluorescence spectroscopy would be studied. The impact of preparation parameters (such as the gas, the gas pressure and substrate temperature, etc.) on film quality will be studied and the fabrication conditions of fine crystal film waveguides will be found out. Ridge waveguides will be realized by using ultrafast laser micromachining technique. The near-field optical intensity distribution, propagation losses, and fluorescence spectra in ridge waveguides would be tested. This is the foundatio

英文关键词: Optical waveguide;Rare-earth ion doping;Photoluminescence;High index contrast material;Femtosecond laser micromachining

成为VIP会员查看完整内容
0

相关内容

《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
94+阅读 · 2022年4月14日
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Arxiv
126+阅读 · 2020年9月6日
Anomalous Instance Detection in Deep Learning: A Survey
Arxiv
15+阅读 · 2020年2月6日
Arxiv
12+阅读 · 2019年3月14日
小贴士
相关VIP内容
《塑造2040年战场的创新技术》欧洲议会研究处,142页pdf
专知会员服务
94+阅读 · 2022年4月14日
《美国太空部队的数字化服务愿景》,17页 pdf
专知会员服务
40+阅读 · 2022年4月4日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员