项目名称: 多孔BiFeO3薄膜的合成及其外场对光催化性能的调控研究

项目编号: No.51272121

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 一般工业技术

项目作者: 林元华

作者单位: 清华大学

项目金额: 85万元

中文摘要: 近年来,半导体光催化技术作为一种可以将光能转化为化学能的简单有效的方法,在光解水制氢以及降解有机污染物方面展现出极大优势,引起了极大的关注。而可见光响应的新型半导体光催化剂可以更多地利用太阳能,因此成为了光催化研究领域的研究热点。最近的研究表明,BiFeO3具有较窄的禁带宽度(~ 2.2 eV),能够响应可见光照射,且具有良好的化学稳定性,预示了BiFeO3在环境污染控制领域具有良好的发展前景。本项目旨在制备BiFeO3多孔薄膜,期望通过调节其显微结构(如孔径、BFO粒径)、及负载纳米金属颗粒,来提高其光催化活性。考虑BiFeO3的多铁性能,研究外磁场、电场对光催化过程中光生电子和空穴对的影响,建立相应的光催化物理机制,获得性能优异的可见光光催化BiFeO3材料。

中文关键词: BiFeO3;光催化;复合结构;溶胶凝胶;有效质量

英文摘要: Recently,semiconductor photocatalysis technology, as a simple method to make the optical energy into chemical energy, has received considerable attention because of its wide application on the water splitting for H2 and the elimination of chemical contaminants. In particular, new visible-light-driven photocatalysts have been widely studied because they can utiize solar energy more effectively. According to recent studies, BiFeO3 (BFO)is an important visible-light responsive photocatalyst due to its suitable band gap (~ 2.2 eV) and good chemical stability. This project will focus on synthesis of porous BFO thin film, and improve its photocatalytic performance with tuning its microstructure (e.g., pore size, BFO particle size) as well as loading metal nanoparticles. Considering the multifferoic behaviors, we will also investigate the influence of the external field on the recombination of electrons and holes during photocatalytic reaction, and establish the responding photocatalytic mechanism.Finally, we will obtain the visible-light-driven BFO photocatalyst with excellent photocatalytic performance.

英文关键词: BiFeO3;Photocatalytic;complex structure;sol-gel;effective mass

成为VIP会员查看完整内容
0

相关内容

【南洋理工-CVPR2022】视觉语言模型的条件提示学习
专知会员服务
33+阅读 · 2022年3月13日
专知会员服务
53+阅读 · 2021年10月16日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
12+阅读 · 2021年7月16日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
64+阅读 · 2021年5月2日
专知会员服务
22+阅读 · 2021年3月9日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
20+阅读 · 2020年11月6日
专知会员服务
29+阅读 · 2020年8月8日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
A Sheaf-Theoretic Construction of Shape Space
Arxiv
0+阅读 · 2022年4月19日
Arxiv
15+阅读 · 2020年2月6日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
【南洋理工-CVPR2022】视觉语言模型的条件提示学习
专知会员服务
33+阅读 · 2022年3月13日
专知会员服务
53+阅读 · 2021年10月16日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
12+阅读 · 2021年7月16日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
64+阅读 · 2021年5月2日
专知会员服务
22+阅读 · 2021年3月9日
【NeurIPS2020】可靠图神经网络鲁棒聚合
专知会员服务
20+阅读 · 2020年11月6日
专知会员服务
29+阅读 · 2020年8月8日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员