项目名称: 具有核壳结构和空心结构的导电高分子基复合纳米纤维的可控制备及热电性能研究

项目编号: No.21274052

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 王策

作者单位: 吉林大学

项目金额: 85万元

中文摘要: 以温差发电和电制冷为代表的热电器件目前已经被广泛应用于航空、航天以及废热发电等领域。热电器件的核心部分是热电材料,其性能直接决定器件效能的优劣。传统无机热电材料一般具有较好的导电性和高的赛贝克系数,但制备比较困难,而且资源有限、成本高、脆性大、加工困难。在本项目中,我们提出利用导电高分子基复合材料作为热电材料,通过将导电高分子进行核壳结构和空心结构设计,使其低维化。通过二次量子限域效应提高一维复合型导电聚合物的热电转换效率。通过研究核壳型和空心型导电高分子复合纳米纤维的结构、组成等对材料电导率和赛贝克系数的影响,研究复合纳米纤维在特定温度下的固有特性、掺杂行为、纤维中无机纳米组分的形态、种类、分布等对材料电导率和赛贝克系数的影响,研究热电器件中导电高分子纳米纤维膜的孔径大小以及厚度对热电转换效率的影响,制备出一类具有高电导率、低热导率、较高赛贝克系数的柔性热电材料。

中文关键词: 导电高分子;静电纺丝;热电材料;;

英文摘要: Thermoelectric devices including thermoelectric generator and refrigerator have been widely applied in the fields of aviation, aerospace and waste heat power generation. Thermoelectric materials are the key part in thermoelectric devices, which determines the performance of the devices. Conventional inorganic thermoelectric materials have a good electrical conductivity and high Seebeck coefficient, but are difficult to synthesize. Moreover, they are resource-constrained, high cost and difficult to be processed. In this project, we have developed a low-dimensional conducting polymer nanocomposites with a core-sheath or hollow structure for thermoelectric applications. The conversion efficiency could be enhanced by the quantum confinement effect in this kind of composite nanofibers. We would study the effects of natural characteristic,doping effect and the shape, type and distribution of inorganic component in the composite nanofibers to the conductivity and Seebeck coefficient, we would also study the effect of the pore size and the thickness of the conducting polymer nanofibers membrane to the conversion efficiency. It is expecting to prepare a new kind of flexible thermoelectric materials with high electrical conductivity, low thermal conductivity and high Seebeck coefficient.

英文关键词: conducting polymer;electrospinning;thermoelectric material;;

成为VIP会员查看完整内容
0

相关内容

【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年5月1日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
30+阅读 · 2019年3月13日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
小贴士
相关主题
相关VIP内容
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
17+阅读 · 2021年10月23日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
89+阅读 · 2021年8月8日
专知会员服务
16+阅读 · 2021年6月6日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
21+阅读 · 2021年5月1日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员