项目名称: 可印刷的柔性有机薄膜晶体管的复合型介电层研究

项目编号: No.61504173

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 无线电电子学、电信技术

项目作者: 刘川

作者单位: 中山大学

项目金额: 20万元

中文摘要: 有机薄膜晶体管(OTFT)实现低操作电压、高电流密度、高可挠性、高稳定性的关键之一在于介电质层的性质。本项目研究半导体-介电质界面的载流子传输关键机理,开发高性能复合型介电质层的材料体系,并研发溶液制备方法。基础研究部分,首先研究单种高介电常数(high-k)在可印刷半导体的OTFT中的载流子输运性质;然后选取合适的低介电常数的电介质,将体电容和界面极化子解耦;最后由OTFT的迁移率变化,得出完整的模型机制。材料体系部分,针对新型的高性能有机半导体,找到优选的复合介电层体系。制备方法部分,用溶液法形成复合双层结构,同时实现高体电容和低界面极化环境,提高载流子浓度和传输性质。介电质包括无机-有机复合型,有机-有机复合型和电解质-有机复合型。本项目将首次深入的研究复合型介电层在印刷柔性TFT中的机理,并首次使用溶液的自组织相分离技术的制备复合型介电层。对基础科学和应用技术都有重要价值。

中文关键词: 薄膜晶体管

英文摘要: The semiconductor-dielectric interface is one of the crucial factors to realize low operating voltage, high current density, high flexibility, high stability, printable and flexible organic thin film transistors (OTFTs). This project will investigate the charge transport mechanism and develop high performance hybrid dielectric material system and the corresponding fabrication methods. In the fundamental study, we will start from systematically studying the impact of high-k dielectric interface on carrier transport in TFTs, having large bulk capacitance and significant polaronic disruption. Second, we will develop the double-layer structure to decouple the bulk capacitance and interfacial dipoles. Third, we will investigate the carrier mobility and derive the full model of the mechanism. In the material research part, we will explore the optimum hybrid dielectrics for the state-of art organic semiconductors to obtain high performance. In the fabrication part, we will investigate using one-step spin-coating method to realize self-assembled phase separation, generating hybrid dielectric layers with high bulk capacitance and low interfacial polarization. Hence, we will make in-depth study on understanding the relation between carrier concentration, interfacial dipoles, and transport properties, and we will demonstrate using self-assembly to fabricate solution-processed dielectric layers for the first time. The project will benefit both fundamental science and application technology in printable, flexible electronics.

英文关键词: thin film transistors

成为VIP会员查看完整内容
0

相关内容

《面向制造业的数字化仿真分类》国家标准意见稿
专知会员服务
67+阅读 · 2022年4月13日
军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
工业人工智能驱动的流程工业智能制造
专知会员服务
102+阅读 · 2022年3月9日
专知会员服务
63+阅读 · 2021年8月24日
专知会员服务
32+阅读 · 2021年8月7日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
107+阅读 · 2020年10月31日
新时期我国信息技术产业的发展
专知会员服务
71+阅读 · 2020年1月18日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
1+阅读 · 2022年4月19日
Arxiv
28+阅读 · 2021年10月1日
小贴士
相关主题
相关VIP内容
《面向制造业的数字化仿真分类》国家标准意见稿
专知会员服务
67+阅读 · 2022年4月13日
军事知识图谱构建技术
专知会员服务
127+阅读 · 2022年4月8日
工业人工智能驱动的流程工业智能制造
专知会员服务
102+阅读 · 2022年3月9日
专知会员服务
63+阅读 · 2021年8月24日
专知会员服务
32+阅读 · 2021年8月7日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
107+阅读 · 2020年10月31日
新时期我国信息技术产业的发展
专知会员服务
71+阅读 · 2020年1月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员